
Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning

Jiawei Fei
∗

NUDT

KAUST

Chen-Yu Ho
∗

KAUST

Atal Narayan Sahu

KAUST

Marco Canini

KAUST

Amedeo Sapio

Intel

ABSTRACT
Efficient collective communication is crucial to parallel-computing

applications such as distributed training of large-scale recommen-

dation systems and natural language processing models. Existing

collective communication libraries focus on optimizing operations

for dense inputs, resulting in transmissions of many zeros when

inputs are sparse. This counters current trends that see increasing

data sparsity in large models.

We propose OmniReduce, an efficient streaming aggregation

system that exploits sparsity to maximize effective bandwidth use

by sending only non-zero data blocks.We demonstrate that this idea

is beneficial and accelerates distributed training by up to 8.2×. Even
at 100 Gbps, OmniReduce delivers 1.4–2.9× better performance for

network-bottlenecked DNNs.

CCS CONCEPTS
•Computer systems organization→Distributed architectures;
• Computing methodologies→Machine learning.

ACM Reference Format:
Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo

Sapio. 2021. Efficient Sparse Collective Communication and its application

to Accelerate Distributed Deep Learning. InACM SIGCOMM 2021 Conference
(SIGCOMM ’21), August 23–28, 2021, Virtual Event, USA. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3452296.3472904

1 INTRODUCTION
Collective communication routines (or simply, collectives) are a

core building block of parallel-computing applications. Collectives

are commonly used to combine data among multiple processes

performing operations in parallel. Achieving high-performance

collective communication is paramount in virtually every scenario

where an unfavorable computation to communication ratio restricts

the ability to efficiently scale the workload.

One such scenario – also the focus of this paper – is distributed

deep learning (DDL), which is now in widespread use to reduce the

∗
Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00

https://doi.org/10.1145/3452296.3472904

2 4 8
Workers

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g

fa
ct

or

DeepLight
LSTM

NCF
BERT

VGG19
ResNet152

Figure 1: Scalability of six DDL workloads (cf. Table 1) as the num-
ber of workers increases in 10Gbps network. The y-axis shows the
scaling factor (𝑠 𝑓) defined as in [69]: 𝑇𝑁

𝑁𝑇
where𝑇 is the single GPU

throughput and 𝑇𝑁 is the measured throughput for a cluster with
𝑁 workers. Linear scalability requires 𝑠 𝑓 = 1 for any 𝑁 . The experi-
mental setup is in §6.

training time of large deep neural networks (DNNs) by paralleliz-

ing training over a large number of workers with GPUs or other

AI accelerators (e.g., TPUs). The most common DDL approach is

data-parallel training via stochastic gradient descent (SGD) [33].

Distributed SGD is a parallel, iterative workload with two steps:

(1) every worker trains a local copy of the model by processing in

parallel a different subset (mini-batch) of the training data; (2) all

workers combine the results of their computation (i.e., the local gra-

dient) to produce an average gradient that is applied to the model,

prior to the next iteration.
1

When distributing SGD on many workers, one can either keep

the per-iteration total mini-batch constant (strong scaling) or lin-

early increase the mini-batch size with the number of workers

(weak scaling). In the former case, the computation time decreases

while the per-worker gradient size stays constant; therefore, train-

ing quickly becomes communication-bound. In the latter case, the

computation to communication ratio (ideally) remains constant.

However, in reality, communication time increases with the num-

ber of workers due to scaling overheads [35, 50, 64]. Moreover,

a large mini-batch size can degrade training quality [31]. To en-

able better scaling, we aim to decrease communication overheads by
optimizing collective communication. Figure 1 shows that these over-
heads are substantial in many DNN workloads, especially for large

models where there exists a significant gap between the measured

performance and ideal linear scaling.

1
Other DDL approaches are model-parallel, pipeline-parallel, and asynchronous data-

parallel. These are not as common and out of scope.

https://doi.org/10.1145/3452296.3472904
https://doi.org/10.1145/3452296.3472904

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio

Model Task Dataset Batch size Dense weights Embedding weights Gradient sparsity OmniReduce comm.
DeepLight [12] Click-through Rate Prediction Criteo 1TB [45] 2

11
1.8 MB 2.26 GB 99.73% (50 epochs) 16 MB (0.7%)

LSTM [29] Language Modeling GBW [8] 128 74 MB 1.52 GB 94.50% (50 epochs) 90 MB (5.5%)
NCF [22] Recommendation ML-20mx4x16 [19] 2

20
0.4 MB 679 MB 84.6% (30 epochs) 280 MB (41%)

BERT [13] Question Answering SQuAD [53] 4 1 GB 284 MB 9.31% (1 epoch *) 1.13 GB (88%)
VGG19 [61] Image Classification ImageNet-1K [56] 64 548 MB – 32.0% (1 epoch *) 547 MB (100%)
ResNet152 [21] Image Classification ImageNet-1K [56] 64 230 MB – 21.6% (1 epoch *) 230 MB (100%)

Table 1: Characteristics of benchmark DNNworkloads. The table separates model size as dense and embedding weights (which are the weights
in embedding layers of a DNN). The gradient has the same size as themodel and the table lists its sparsity averaged over a longitudinal analysis
of several epochs (* refers to a pre-trained model). The last column details the average per-worker communication by using OmniReduce
shown as volume (and % of the otherwise dense communication).

Moreover, the size of new DNN models is increasing at a faster

pace than hardware compute capacity [24]. Therefore efficient com-

munication is becoming even more crucial. For instance, in a short

span of 2.5 years, model size has grown by over 1, 000× from∼ 100M

weights in 2018 for ELMo [51] or BERT [13] to ∼ 100B for OpenAI

GPT-3 [6] (May 2020). In contrast, the current best-in-class NVIDIA

A100 GPU (May 2020) is advertised [47] as up to 10× and 20× faster
for floating-point and mixed-precision calculations, respectively,

than its V100 predecessor, released in December 2017.

Indeed, the fact that communication is a major performance bot-

tleneck in DDL is well-known [32], and many works [10, 35, 39, 44,

58, 66] proposed various optimizations to achieve high-bandwidth

collective communication specialized for DDL. Besides, a recent

body of work, primarily within the ML community, developed

gradient compression methods [1, 2, 42, 63, 67] to reduce communi-

cation time by sending a smaller amount of data, albeit at the cost

of reduced training quality due to the lossy nature of compression.

However, these works have failed to observe that, along with the

fast-paced increase in model size, gradient sparsity (i.e., the propor-

tion of zero elements in the gradient vector) follows a similar trend.

Table 1 shows that gradient sparsity exceeds 94% for the two largest

DNN workloads in our study. Sparse gradient vectors (i.e., with

sparsity above 50%) are typical for DNNs with a large proportion

of embedding weights.
2
This characteristic spans a broad range of

deep learning tasks.

Most existing collective libraries – including DDL-specialized

ones like NCCL [48] and Gloo [16] – have no native support for

sparse data. These libraries assume dense input data and make

inefficient use of precious network bandwidth to transmit large

volumes of zeros. Generally, this is also a limitation for gradient

compression methods because their implementations first gather

the sparse data into a dense-like format (which has overheads)

before invoking a collective routine [68] (§2).

Our key innovation is the design of efficient collective operations for
sparse data. We present OmniReduce, a streaming aggregation sys-

tem designed to maximize the efficient use of bandwidth and serve

as a drop-in replacement for the traditional collective libraries. Om-

niReduce exploits the sparsity of input data to reduce the amount

of communication. As shown in the last column of Table 1, OmniRe-

duce moves up to two orders of magnitude less data by leveraging

an aggregator component that determines the non-zero data at

each worker in a streaming look-ahead fashion. OmniReduce splits

2
Embedding layers are used to process high-dimensional and typically sparse data.

Typically, updates to embedding weights are sparse as only a few embedding vectors

from a huge dictionary are used in one batch, and only these vectors have non-zero

gradients in the batch.

input data into blocks where a block is either a split of contiguous

values within an input vector in a dense format or a list of key-

value pairs representing non-zero values. OmniReduce achieves

high performance through fine-grained parallelization across blocks

and pipelining to saturate network bandwidth. OmniReduce lever-

ages fine-grained control of the network to design a self-clocked,

bandwidth-optimal protocol. The block-oriented approach, fine-

grained parallelism, and built-in flow control allow us to implement

the aggregator in-network using modern programmable switching

ASICs. In addition, OmniReduce supports both DPDK and RDMA,

and where available, exploits GPU-direct RDMA (GDR) to improve

the performance.

OmniReduce achieves the following goals:

• High performance and scalability. Algorithmically, computa-

tional and space complexity do not depend on the number of nodes,

while aggregation latency is masked with pipelining. This allows

OmniReduce to scale better than previous approaches fundamen-

tally.

• Data-format universality. The acceleration is proportional to

the sparsity of input data. At the same time, OmniReduce does not

require data to be sparse to provide benefits. In the limit, when data

is dense, OmniReduce is comparable to bandwidth-optimal dense

AllReduce.

• Flexibility. OmniReduce’s streaming aggregation algorithms

admit a variety of instantiations. Sparse input data can be in a

block-based dense or sparse (key-value) format without requiring a

newAPI. The aggregator component can run on dedicated server re-

sources (cheaper than worker nodes equipped with GPUs), can run

co-located on worker nodes, or with the aid of network switches,

as an in-network aggregation component similarly to Mellanox

SHARP [44], SwitchML [58] or ATP [38].

To the best of our knowledge, OmniReduce is the first system

that realizes all of the above goals at once. SparcML [55] is a collec-

tive library for sparse data; however, it requires very high sparsity

to achieve performance benefits over dense AllReduce (their results,

which we confirm (§6) show benefits when sparsity > 94%). Par-

allax [34] is a parameter-server architecture specialized for sparse

data but requires runtime profiling. Unlike OmniReduce, both of

these approaches require input data in the sparse format. We be-

lieve that OmniReduce is a general approach and could benefit

other applications like data-parallel analytics and sparse matrix

multiplication.

We make the following contributions:

•We present the design (§3) and implementation (§5) of OmniRe-

duce, an efficient streaming aggregation system for sparse-native

Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

collective communication. Via performance modeling, we demon-

strate the theoretical advantages of OmniReduce over standard

approaches.

•We introduce block gradient sparsification (§4), a gradient com-

pression technique that works by sampling gradients’ blocks of

contiguous elements. We prove convergence and demonstrate em-

pirically that our block-based sparsification techniques can sparsify

data to obtain training speedup with negligible degradation in

model performance.

•We quantify the performance benefits of OmniReduce using six

popular DNN workloads (§6). In end-to-end settings, OmniReduce

speeds up training throughput by up to 8.2× at 10 Gbps and 2.9× at

100 Gbps compared to standard ring AllReduce. We also use bench-

marks to compare to state-of-the-art solutions in both TCP/IP and

RDMA networks and show that OmniReduce outperforms them by

3.5–16×. OmniReduce is also effective for large-DNN distributed

training jobs with multi-GPU servers.

This work does not raise any ethical issues. OmniReduce is

available at https://github.com/sands-lab/omnireduce.

2 BACKGROUND
Collective communication routines. The Message Passing In-

terface (MPI) [17] standard defines a set of communication protocols

for point-to-point and collective routines. In DDL, three collectives

are typically used:

• Broadcast distributes data from one process to all other processes.

This is often used to sync model state among workers, e.g., when

reading from a model checkpoint.

• AllReduce combines data collected from all processes into a global

result by a chosen operator (e.g., sum, min, max). AllReduce is the

most frequently used collective operation in DDL workloads to

aggregate gradients by summation.

• AllGather collects data from all processes and stores the collected

data on all processes. AllGather is useful when the reduction op-

eration is not an associative, point-wise operation. Some gradient

compressors use it [68].

We refer to the datatype of collectives’ input and output data as

a tensor (i.e., a multi-dimensional matrix). Let 𝑛 be the input size,

and 𝑐𝑣 be the number of bytes needed to represent a non-zero input

value;𝑚 is the number of non-zero values.

Tensor data format. The elements of a dense tensor are consec-
utively stored like an array in memory. It is often beneficial or

sometimes necessary (due to insufficient memory capacity) to use

specialized data structures to store sparse tensors. For example, co-

ordinate lists (COO) store a list of non-zero values and a list of the

corresponding indices. Dictionary of keys (DOK) stores a dictionary

that maps indices to non-zero elements. Although some ML toolkits

support sparse tensors (typically in COO format), state-of-the-art

collective libraries like NCCL and Gloo operate only with dense

tensors even though the underlying data may be sparse.

2.1 Related work
Efficient sparse collectives. A strawman solution to perform col-

lective operations with sparse tensors is to collect the values and

indices separately [65]. Further, one can compress the indices using

a bitmask [60] or Bloom filters [37], and the values by run-length

encoding [23] or quantization [14]. PyTorch implements such a

strawman – AllGather-based sparse AllReduce (AGsparse) – that

invokes AllGather twice to collect the values and indices of a sparse

tensor and makes a local reduction at every process [52]. Because

AllGather needs to allocate an intermediate buffer with the size

proportional to the number of processes, AGsparse increments the

memory footprint despite sparse data. Further, AGsparse has poor

scalability (analyzed in §3.4) as it implicitly assumes no overlap of

non-zero indices and is viable only when𝑚 ≤ 𝜌 =
𝑛𝑐𝑣
𝑐𝑖+𝑐𝑣 , where 𝑐𝑖

is the number of bytes needed to store an index (i.e., sparsity above

50% assuming 𝑐𝑣 = 𝑐𝑖).

Kylix [70] is also an AllGather-based sparse AllReduce method,

which uses a Butterfly network. However, Kylix performs multiple

passes, and its design makes a particular assumption on the data

distribution.

SparCML [55] is a set of collectives for arbitrary sparse input

data designed for DDL. SparCML uses a latency-bandwidth cost

model to characterize different cases and trade-offs between small

vs. large messages, and decide whether the output remains sparse

or becomes dense (adapting to𝑚 > 𝜌), delineating two scenarios:

static and dynamic sparse AllReduce (SSAR or DSAR, respectively).

Data representation in SSAR is always in the sparse format. When

the amount of data is small, latency dominates the bandwidth term;

thus, a latency-optimal recursive doubling algorithm is used. With

large data, SSAR_Split_allgather is a two-phase algorithm that

optimizes AGsparse by (1) splitting the input into 𝑁 partitions,

one per process, each processed via an AGsparse-like approach to

gather data at each designated process and (2) a gathering phase

that uses a concatenating AllGather to collect reduced sparse data

at all processes. In DASR, DSAR_Split_allgather starts with sparse

representation and switches to dense representation during the

reduction operation once the condition𝑚 > 𝜌 is detected.

In AGsparse and SparCML, communication and reduction occur

separately and serially. Instead, OmniReduce performs communica-

tion and reduction in parallel by streaming data via the aggregator.

OmniReduce thus can make full use of network bandwidth, while

bandwidth is wasted when conducting local reductions in AGsparse

and SparCML. OmniReduce supports dense inputs without the for-

mat conversion overheads paid by AGsparse and SparCML (§6.1).

OmniReduce can reduce communication volume by adopting a

block-based format because it does not need to transfer indices.

Parallax [34] devises a hybrid DDL system that has a runtime

sparsity monitor and uses a cost model to partition the model

weights between a parameter server (PS) architecture for sparse

data and traditional AllReduce for dense data. OmniReduce neither

requires prior knowledge nor introduces runtime profiling.

All the above works do not use streaming methods for sparse

data AllReduce because the indices of non-zero elements across

all workers are unknown before the AllReduce operation; thus,

the result can only be broadcast after all the key-value pairs are

received and reduced. This problem makes current sparse collective

works unable to take full advantage of the inbound and outbound

bandwidth at workers. OmniReduce solves this problem by using

aggregators to coordinate between workers. Besides, no prior work

evaluates performance with a 100 Gbps network nor utilizes RDMA

fully (Parallax uses RDMA only with dense data). This is mainly

https://github.com/sands-lab/omnireduce

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio

because the memory access operation for each key-value pair is

not suitable for RDMA. OmniReduce uses a block-wise method to

solve this problem, which ensures full use of the bandwidth while

taking sparsity into account.

Gradient compression. Orthogonal to efficient sparse collective

communication, a recent body of work proposes to reduce the

amount of communication via gradient compression. As there is a

vast literature on the topic, we refer to a recent survey [68] for a

comprehensive discussion. And while techniques abound [1, 2, 42,

63, 67], we distinguish two main approaches: sparsification – which

sends a subset of elements – and quantization – which reduces the

per-element bit-width. Gradient compression is typically lossy and,

as a result, can impact the resulted model quality; however, the drop

in accuracy is usually small, and one can regulate the compression

level to navigate the trade-off. These techniques and OmniReduce

are complementary: on the one hand, gradient compression helps

to sparsify data in a principled manner; on the other hand, OmniRe-

duce accelerates collective communication of sparse data (allowing

for a less aggressive compression level for a given communication

budget). We defer discussing other related work to §8.

3 OMNIREDUCE DESIGN
To minimize AllReduce latency, the core idea of OmniReduce is

to partition an input tensor 𝐺 into blocks of tensor elements and

transmit only non-zero blocks (i.e., blocks with at least one non-zero

value). OmniReduce consists of worker and aggregator components.

The aggregator coordinates workers, instructing them on which

block to send next. For scalability, the aggregator executes over

one or more nodes; in the latter case, each node owns a disjoint

shard of blocks. Each aggregator node has a pool of slots, and each

slot aggregates a block-sized set of tensor elements. Workers are

responsible for detecting and sending non-zero blocks.

Depending on the application, the block format is either dense

(i.e., a contiguous subset of 𝐺) or sparse (i.e., a list of key-value

pairs). We first consider the dense format and then generalize it to

the sparse format.

OmniReduce fundamentally improves AllReduce performance

thanks to the following two design principles:

• Fine-grained parallelism and data pipelining. With each

block being independent of any other block, aggregation can be

easily parallelized. This enables tightly coupled workers to stream

data as a form of a latency-masking pipeline to saturate the aggre-

gator’s processing rate, which also serves as a flow control function,

yielding a self-clocked protocol similar to other streaming aggrega-

tion approaches [44, 58].

• Coordinated aggregation. Coordination is key to sending only

the non-zero data. The aggregator globally determines the posi-

tions of non-zero values among workers in a look-ahead fashion

based on the next position metadata efficiently available at the

workers (which communicate it to the aggregator). This component

differentiates OmniReduce from any related work.

3.1 Basic solution
For simplicity, we introduce the more straightforward scenario of a

lossless network with guaranteed packet delivery. This matches the

environment of our RDMA implementation. Figure 2 illustrates this

Algorithm 1: OmniReduce block aggregation

1 At Worker:
2 𝑝.𝑛𝑒𝑥𝑡, 𝑛𝑒𝑥𝑡 ← index of first non-zero block past block 0

3 𝑝.𝑏𝑙𝑜𝑐𝑘 ← 0

4 𝑝.𝑤𝑖𝑑 ← worker ID

5 𝑝.𝑑𝑎𝑡𝑎 ← 𝐺 [0 : 𝑏𝑠]
6 send 𝑝 to 𝑎𝑔𝑔

7 repeat upon receive p(data, block, next, wid)
8 𝐺 [𝑝.𝑏𝑙𝑜𝑐𝑘 : 𝑝.𝑏𝑙𝑜𝑐𝑘 + 𝑏𝑠] ← 𝑝.𝑑𝑎𝑡𝑎

9 if 𝑝.𝑛𝑒𝑥𝑡 = 𝑛𝑒𝑥𝑡 then
10 𝑝.𝑑𝑎𝑡𝑎 ← 𝐺 [𝑛𝑒𝑥𝑡 : 𝑛𝑒𝑥𝑡 + 𝑏𝑠]
11 𝑝.𝑏𝑙𝑜𝑐𝑘 ← 𝑛𝑒𝑥𝑡

12 𝑝.𝑛𝑒𝑥𝑡, 𝑛𝑒𝑥𝑡 ← next non-zero block index or else∞
13 𝑝.𝑤𝑖𝑑 ← worker ID

14 send 𝑝 to 𝑎𝑔𝑔

15 until 𝑝.𝑛𝑒𝑥𝑡 = ∞
16 At Aggregator:
17 𝑠𝑙𝑜𝑡 [𝑏𝑠] := {0}
18 𝑛𝑒𝑥𝑡 [𝑁] := {−∞} // per-worker next non-zero block index
19 forever upon receive p(data, block, next, wid)
20 𝑠𝑙𝑜𝑡 ← 𝑠𝑙𝑜𝑡 + 𝑝.𝑑𝑎𝑡𝑎 // reduction operation
21 𝑛𝑒𝑥𝑡 [𝑝.𝑤𝑖𝑑] ← 𝑝.𝑛𝑒𝑥𝑡

22 if 𝑝.𝑏𝑙𝑜𝑐𝑘 < min(𝑛𝑒𝑥𝑡) then
23 𝑝.𝑑𝑎𝑡𝑎 ← 𝑠𝑙𝑜𝑡

24 𝑝.𝑛𝑒𝑥𝑡 ← min(𝑛𝑒𝑥𝑡)
25 𝑠𝑙𝑜𝑡 [𝑏𝑠] := {0}
26 if min(𝑛𝑒𝑥𝑡) = ∞ then 𝑛𝑒𝑥𝑡 [𝑁] := {−∞}
27 send 𝑝 to all workers

scenario with an example. Due to space limit, we discuss packet

loss recovery in Appendix A.

Algorithm 1 illustrates the basic OmniReduce algorithm for

dense tensors. A dense tensor consists of a list of values partitioned

into blocks. Every block has a size of 𝑏𝑠 . For ease of description

and without loss of generality, we assume that the tensor size is

a multiple of 𝑏𝑠 , and the pool size is 1 (i.e., the aggregator has a

single slot). We assume the reduction operation is sum (+). Other
commutative reduction operations are analogous.

Worker: Every worker initially sets 𝑛𝑒𝑥𝑡 as the offset of the next

non-zero block after the first block and records it locally. Theworker

then sends a packet 𝑝 containing the first block and 𝑛𝑒𝑥𝑡 (Figure 2a).

Then, each worker enters a loop where it awaits the aggrega-

tor’s response. Upon receiving a packet, the worker obtains: (1) the

aggregated block data (𝑝.𝑑𝑎𝑡𝑎) along with its respective number

(𝑝.𝑏𝑙𝑜𝑐𝑘), and (2) the next block (𝑝.𝑛𝑒𝑥𝑡) requested by the aggrega-

tor (Figure 2b).

The worker stores the aggregated block data into the local tensor

𝐺 ; then, the worker checks whether its next non-zero block corre-

sponds to the aggregator’s request. If so, the worker updates 𝑛𝑒𝑥𝑡

with the subsequent non-zero block and sends the requested block

to the aggregator (𝑊1 in Figure 2c). Otherwise the worker awaits

a further packet (𝑊2 in Figure 2c). The loop repeats (Figure 2c-2e)

and ends once the aggregator signals that reduction is complete by

requesting∞ as the 𝑛𝑒𝑥𝑡 block (Figure 2f).

Aggregator: The aggregator does not only aggregate blocks but

also keeps track of each worker’s next non-zero block. This state

is updated whenever a worker sends a packet and enables the ag-

gregator to know the global next non-zero block number. This

information is piggybacked into a packet that the aggregator multi-

casts to the workers with the aggregated data once it determines

that a slot is complete. To determine so, the aggregator compares

Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

W1 1 2 3 W2 1 2 3

00 0+ =

global next block: 2

2 3

2

0

3

0 W1 0 1 2 3 W2 0 1 2 3

global next block: 2

2 3

2

0

2

0

Wait for block 2

W1 0 1 2 3 W2 0 1 2 3

2 2+ =

global next block: 3

3 3

3

W1 0 1 2 3 W2 0 1 2 3

global next block: 3

3 3

3

2

3

2

Wait for block 3

Step 1
Step 2

Step 3 Step 4

Aggregator Aggregator

Aggregator Aggregator

(a)𝑊1 and𝑊2 send first block (0).

W1 1 2 3 W2 1 2 3

00 0+ =

global next block: 2

2 3

2

0

3

0 W1 0 1 2 3 W2 0 1 2 3

global next block: 2

2 3

2

0

2

0

Wait for block 2

W1 0 1 2 3 W2 0 1 2 3

2 2+ =

global next block: 3

3 3

3

W1 0 1 2 3 W2 0 1 2 3

global next block: 3

3 3

3

2

3

2

Wait for block 3

Step 1
Step 2

Step 3 Step 4

Aggregator Aggregator

Aggregator Aggregator

(b) Agg. returns block 0 and asks block 2.

W1 1 2 3 W2 1 2 3

00 0+ =

global next block: 2

2 3

2

0

3

0 W1 0 1 2 3 W2 0 1 2 3

global next block: 2

2 3

2

0

2

0

Wait for block 2

W1 0 1 2 3 W2 0 1 2 3

2 2+ =

global next block: 3

3 3

3

W1 0 1 2 3 W2 0 1 2 3

global next block: 3

3 3

3

2

3

2

Wait for block 3

Step 1
Step 2

Step 3 Step 4

Aggregator Aggregator

Aggregator Aggregator

(c) Only𝑊1 sends non-zero block 2.

W1 1 2 3 W2 1 2 3

00 0+ =

global next block: 2

2 3

2

0

3

0 W1 0 1 2 3 W2 0 1 2 3

global next block: 2

2 3

2

0

2

0

Wait for block 2

W1 0 1 2 3 W2 0 1 2 3

2 2+ =

global next block: 3

3 3

3

W1 0 1 2 3 W2 0 1 2 3

global next block: 3

3 3

3

2

3

2

Wait for block 3

Step 1
Step 2

Step 3 Step 4

Aggregator Aggregator

Aggregator Aggregator

(d) Agg. returns block 2 and asks block 3.

W1 0 1 2 3 W2 0 1 2 3

33 3+ =

global next block: ∞

∞ ∞

∞ ∞

W1 0 1 2 3 W2 0 1 2 3

global next block: -∞

-∞ -∞

∞

3

∞

3

Wait for new tensor

Step 5 Step 6

Aggregator Aggregator

(e)𝑊1 and𝑊2 send non-zero block 3.

W1 0 1 2 3 W2 0 1 2 3

33 3+ =

global next block: ∞

∞ ∞

∞ ∞

W1 0 1 2 3 W2 0 1 2 3

global next block: -∞

-∞ -∞

∞

3

∞

3

Wait for new tensor

Step 5 Step 6

Aggregator Aggregator

(f) Agg. returns and signals the end (∞).

Figure 2: After every worker sends its first block, the aggregator maintains a view of the global next block necessary for aggregation. Workers
only transmit non-zero blocks when the block number matches the requested global next block and inform the aggregator of their next non-
zero block. Cumulatively, this ensures that aggregation completes once all non-zero block are transmitted; zero blocks are not transmitted.
Legends: ■ and ■ are non-zero blocks; ■ are aggregated blocks; □ are zero blocks.

the packet’s block number (𝑝.𝑏𝑙𝑜𝑐𝑘) with the minimum of next

non-zero blocks across all workers, min(𝑛𝑒𝑥𝑡). Note that 𝑛𝑒𝑥𝑡 is
already updated to reflect 𝑝.𝑛𝑒𝑥𝑡 . If 𝑝.𝑏𝑙𝑜𝑐𝑘 is less than min(𝑛𝑒𝑥𝑡),
then the current packet is the last one for this slot. The aggregator

then crafts a response packet for 𝑝.𝑏𝑙𝑜𝑐𝑘 with the aggregated data

in 𝑠𝑙𝑜𝑡 , resets the state (𝑛𝑒𝑥𝑡 and 𝑠𝑙𝑜𝑡), and multicasts that packet

to the workers.

3.1.1 Fine-grained parallelism. It is easy to observe that the above

aggregation logic, while tightly coupling workers at a particular

slot, can be parallelized across slots. In the limit, each slot is an

independent unit of aggregation. In practice, available network

bandwidth limits the number of slots that can be addressed in

parallel before the aggregator responds.

OmniReduce exploits this kind of fine-grained parallelism to

achieve a form of pipelining that improves performance. The aggre-

gator maintains a pool of slots addressable by indices (carried in each
packet). Workers run Algorithm 1 for 𝑆 independent aggregation

streams (or threads), each of which addresses a separate slot while

proceeding at the same rate. As packets are serialized over the net-

work, this architecture can be viewed as pipeline-based processing

of one slot per time unit. The available network bandwidth dictates

the pipeline depth that is necessary to avoid processing stalls.

3.1.2 How sparsity affects performance. Since workers only send

non-zero blocks, a crucial performance factor is the tensor’s block

sparsity, which is the proportion of all-zero blocks in the tensor. In

turn, block sparsity is determined by not only the tensor itself but

also the block size. In general, a smaller block size increases block

sparsity, but it also decreases bandwidth utilization efficiency due

to packets carrying a smaller payload. Focusing on this, we propose

the Block Fusion method (§3.2). We analyze the effects of block

size on the performance of OmniReduce in the evaluation section.

Therein we empirically find (§6.4) that a block size of 256 elements

(32-bit floating point values) is the best choice in our setting.

Another factor influencing the performance of OmniReduce

in practice might be the cost of finding the next non-zero block.

Nevertheless, we find that checking all values in one block has a

negligible overhead when this operation is done in parallel on the

GPU, as we implement it (§5).

3.2 Block fusion
In the basic solution, each packet contains one block; therefore

the payload is equal to 𝑏𝑠 · 𝑐𝑣 plus metadata (next). Having bigger

blocks increase bandwidth utilization but also leads to a lower block

sparsity because a larger block is more likely to contain at least one

non-zero element.

To balance the trade-off between block sparsity and bandwidth

usage, we propose a method called Block Fusion, which packs mul-

tiple blocks into a single packet and uses one slot to process them

in batch. As with the basic solution, a slot remains the minimum

unit of aggregation and has the capacity to aggregate all values in a

single packet. Thus, if𝑤 is the number of blocks fused in a packet

to maximize its payload, a slot aggregates𝑤 · 𝑏𝑠 values at once.
The main technical challenge is how to choose which blocks

to fuse in a packet. While it may seem straightforward to have

each worker fuse its next𝑤 non-zero blocks, note that streaming

aggregation is most effective when same-offset blocks are sent at

the same time among workers. Thus, we must ensure that blocks

are mapped at consistent locations into the packet (and, in turn,

the slot) based on block offsets. To do so, a gradient tensor in a

worker is arranged as a two-dimensional matrix of blocks. For

clarity, consider the example shown in Figure 3. Then, we map each

block at a determined location into the packet based on its column

index and we include in each packet a next non-zero block index

for each fused block. The next block offset is found by scanning

over the rows for each column independently. This scheme ensures

that two blocks at the same column index cannot be fused into

the same packet. As a result, the same logic of the basic solution

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio

12 ∞ ! 10 70 5 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

∞ ! ∞ " ∞ # ∞ !

4

Packet

Block num Block
data

Next
offset

One slot

Figure 3: Tensor data at one worker viewed in a two-dimensional
layout and a packet in the Block Fusion method with 𝑤 = 4 packed
blocks. Blocks in orange are non-zero.

(Algorithm 1) remains unchanged and this scheme does not require

transmitting any additional information.

When the aggregator receives a packet, it checks the completion

for each block using the same condition as the basic solution (line 22

in Algorithm 1). The aggregator multicasts aggregated data in a slot

to the workers after all blocks in the slot are completely aggregated.

Workers, upon receiving a result packet, check whether any of the

next blocks requested by the aggregator are non-zero. As long as

one requested block is non-zero, each worker fuses the requested

blocks into a packet and sends it to the aggregator. The reduction

is complete when the aggregator requests∞ as the next block for

all the𝑤 blocks in the slot, for every slot.

The worker does not send non-zero blocks. The packet includes

a block num field to denote how many blocks it includes. The aggre-

gator identifies the column index of each included non-zero block

based on the values for the next block index.
3

3.3 Extension to sparse block format
OmniReduce’s block aggregation approach generalizes to sparse

tensors (e.g., in COO format). We briefly discuss this extension, the

algorithm of which is in Algorithm 3. For ease of presentation, we do

not consider stream parallelism or packet loss recovery. In this case,

the input tensor is a 𝐾,𝑉 pair, where 𝐾 is a list of keys (or indices)

and 𝑉 is a list of the corresponding values. The worker sends a

packet with a block of 𝑏𝑠 key-value pairs along with the 𝑛𝑒𝑥𝑡𝑘𝑒𝑦 to

indicate the key of the next non-zero value. The aggregator keeps

track of 𝑛𝑒𝑥𝑡𝑘𝑒𝑦 for every worker, attaching the minimum next key

it needs to receive from any worker when sending back a result

packet. Only when a worker receives a 𝑝.𝑛𝑒𝑥𝑡𝑘𝑒𝑦 matching its next

non-zero value will it send another block to the aggregator. The

aggregator internally uses a hashtable or a similar keyed-memory

abstraction to carry out aggregation based on key-value pairs.

While we present the above approach for completeness, we do

not investigate its practical realization and leave it as future work.

We note that our real-world applications only use dense tensors,

and format conversion entails non-negligible overheads (§6.1). As

this approach only transmits non-zero values, it could be more

advantageous than the dense block format when a block has more

than
𝑏𝑠 ·𝑐𝑣
𝑐𝑖+𝑐𝑣 zero values within it. We observe that, the dense block

format maintains high sparsity for a range of block sizes (§6.4).

3
Column index 𝑖 is determined as 𝑖 = 𝑛𝑒𝑥𝑡

𝑏𝑠
mod 𝑤. We use 𝑤 distinct values of∞,

each for a different column. The value∞𝑖 maps to 𝑖 .

3.4 Performance analysis
We analyze the theoretical benefits of OmniReduce following the

modeling approach of Patarasuk et al. [49]. We use a performance

model to compare OmniReduce versus ring AllReduce, which is

bandwidth optimal [49] and versus AGsparse AllReduce. As the pri-

mary interest is the dominating communication time, our analysis

ignores the unitary local reduction time in the model below since

pipelining could mask much of this latency term.

Ring AllReduce is a widely-adopted AllReduce algorithm and is

the default algorithm for Gloo and NCCL. Consider 𝑁 workers

and that each worker has full-duplex network bandwidth 𝐵; the

time to perform a ring-based AllReduce operation of 𝑆 elements is:

𝑇𝑟𝑖𝑛𝑔 = 2(𝑁 − 1) (𝛼 + 𝑆
𝑁𝐵
).

Where 𝛼 is the one-way network latency between workers (as-

sumed to be uniform).

AGsparseAllReduce is a commonly usedmethod to reduce sparse

format data (key and value pairs). It consists of two steps: (1) All-

Gather keys and values, and (2) local reduction. Let𝐷 ∈ [0, 1] be the
density of elements at each worker; the number of input elements

to AllGather is 2𝐷𝑆 (i.e., 𝐷𝑆 keys and 𝐷𝑆 values). An AllGather

operation only performs the first phase of the AllReduce operation,

halving its time for input with 2𝐷𝑆𝑁 elements. Thus, the AGsparse

AllReduce time is: 𝑇𝐴𝐺𝑠𝑝𝑎𝑟𝑠𝑒 = (𝑁 − 1) (𝛼 + 2𝐷𝑆
𝐵
).

OmniReduce achieves bandwidth-optimality when the aggrega-

tor bandwidth matches the combined worker bandwidth 𝑁𝐵 and

only non-zero elements are transmitted. This best-case scenario

is analyzed here, which implies that block density is the same as

the element density 𝐷 . Note that the number of aggregator nodes

used is not relevant because fine-grained parallelism enables ideal

linear scaling through sharding. The aggregator receives a total of

𝐷𝑆 elements (
𝐷𝑆
𝑁

from each worker).

As the data transmission and aggregation at the aggregator is

pipelined, the latency of intermediate packets is masked. Thus, the

OmniReduce time is: 𝑇𝑂𝑚𝑛𝑖𝑅𝑒𝑑𝑢𝑐𝑒 = 𝛼 + 𝐷𝑆𝐵
Speedup. To ease comparison, we distinguish two cases: (1) very

sparse data and (2) sparse-to-dense data.

Very sparse data: in this case, 𝐷 is very small and the latency term

𝛼 dominates the bandwidth term. OmniReduce is expected to be

better than both ring AllReduce and AGsparse AllReduce because

OmniReduce’s performance does not depend on the number of

workers 𝑁 .

Sparse-to-dense data: as the data volume is larger in this case, we can

ignore the latency 𝛼 . We calculate the theoretical speedup factor of

OmniReduce relative to other approaches as follows:

𝑆𝑈vs. ring 𝑆𝑈vs. AGsparse

𝑇other
𝑇OmniReduce

2(𝑁−1)
𝑁𝐷

2(𝑁 − 1)
The performance benefit of OmniReduce is two-fold. First, Om-

niReduce is much more scalable, and both speedup factors grow

with the number of workers because OmniReduce’s time does not

depend on the number of workers. This speedup is fundamental

and exists even with a dense input (𝐷 = 1). Second, in contrast to

ring AllReduce, OmniReduce only sends non-zero elements, which

reduces the time proportionally to
1

𝐷
.

Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Further, we observe that OmniReduce remains advantageous

even in a co-location settingwhere the aggregator service is sharded

and co-located across 𝑁 workers (each of which thus has
𝐵
2
band-

width). In this case, the benefit over ring AllReduce overall dimin-

ishes by a factor of 2 and 𝑆𝑈vs. ring = 1 when 𝐷 = 1.

4 BLOCK-BASED SPARSIFICATION
Given the performance benefits of OmniReduce for sparse gra-

dients by sending only non-zero blocks, one can think of using

OmniReduce with block-based gradient sparsification techniques

when gradients are not sparse. While many element-wise spar-

sification techniques exist in the literature, e.g., Random-𝑘 [62],

Top-𝑘 [3, 42], and threshold [15, 63], no block-based sparsification

technique exists.

Hence, as a natural extension to the existing element-wise spar-

sification techniques, we devise and experiment with the following

block-based sparsification schemes:

• Block Random-𝑘 : Randomly sample 𝑘 blocks.

• Block Top-𝑘 : Select Top-𝑘 blocks according to the block gradient

norm (ℓ2 norm of the gradient values in the block).

• Block Top-𝑘 Ratio: Select Top-𝑘 blocks according to the block

update-ratio norm, where update-ratio for a parameter is the ratio

of its gradient value to parameter value.

• Block threshold: Select blocks with the block gradient norm higher

than a given threshold.

While a new theoretical analysis for block-based sparsification

is out of scope, we show that Block Random-k and Block Top-k
are 𝛿-compressors [30], and hence converge according to the Error-
Feedback theory [62, 71].

Lemma. Let𝑏 denote the total number of blocks. Both Block Random-
𝑘 and Block Top-𝑘 are 𝛿-compressors with 𝛿 = 𝑘

𝑏
.

Proof. The proof is in Appendix C.

Using this lemma, Theorem 1 in [71] gives the convergence result

for compressed distributed SGD with error-feedback for any 𝛿-

compressor. Our empirical results confirm that block-based gradient

compression converges (§6.2).

5 IMPLEMENTATION
We implement OmniReduce using C++11 and CUDA, optimizing

communication for both TCP/IP and RDMA networks. We also

make use of GPU-direct RDMA (GDR) where available. Further-

more, OmniReduce is integrated with PyTorch’s DistributedDat-

aParallel (DDP) package (torch.distributed), which transparently

performs distributed data-parallel training. The worker component

is written in ∼ 4, 000 lines of codes (LoC), while the aggregator is

∼ 1, 500 LoCs in C++.

DPDK. For clusters without RDMA support, we use Intel DPDK

for kernel bypass and communicate using UDP packets. This imple-

mentation includes our packet-loss recovery method (Appendix A).

To reach full bandwidth utilization, we use DPDK flow director

to scale packet processing to 4 CPU cores on both workers and

aggregators. The number of outstanding packets processed by each

worker is set to 256 (64 packets per core).

RDMA. OmniReduce uses RDMA RoCE v2 in Reliable Connected

(RC) mode, which guarantees at-most-once, in order, and without

corruption delivery. We use sender/receiver buffers for data ex-

change betweenworkers and aggregators. OmniReduce uses RDMA

SEND/RECV operations to exchange buffer memory addresses and

RDMAWRITE_WITH_IMM for data transfer. OmniReduce meta-

data is encoded as 32-bit immediate values consisting of data type

(2 bits), AllReduce opcode (2 bits), slot id (12 bits) and the number

of blocks (16 bits) in this message. The block data and the offsets

of next non-zero blocks are taken as the payload of the RDMA

message. An aggregation slot works at the granularity of an RDMA

message and not of a single packet; the logic is unchanged.

Multi-GPU servers. When there are multiple GPUs per server,

OmniReduce performs a two-layer hierarchical aggregation. We

use NCCL for intra-server multi-GPU reduction and broadcast in

the first layer and use OmniReduce for inter-server communication.

Additional implementation details are in Appendix B.

6 EVALUATION
We evaluate OmniReduce’s performance and compare it to both

dense and sparse state-of-the-art collective libraries in both 10 Gbps

and 100 Gbps networks. We also evaluate the benefits of the Block

Fusion method and analyze the influence of different factors like

block size, sparsity, and non-zero block overlap among workers

in §6.4. For the DPDK-based OmniReduce, we also analyze the

influence of packet loss rates in Appendix D. Our experiments rely

on several microbenchmarks as well as six end-to-end training

workloads with 256 as the default block size.

Testbeds. Our experiments mainly target two testbeds for the 10

and 100 Gbps cases, which consist of 24 machines in total. Eight

machines are equipped with dual 8-core Intel Xeon Silver 4108 CPU

at 1.80 GHz and have no GPUs; these are connected at both 10 and

100 Gbps and serve as aggregators. Other machines are workers:

(1) In the 10 Gbps testbed, there are eight machines, each equipped

with 1 NVIDIA P100 GPU, dual 10-core CPU Intel Xeon E5-2630

v4 at 2.20 GHz, 128 GB of RAM, and 10 GbE Intel NIC. (2) In the

100 Gbps testbed, there are eight machines, each equipped with

2 NVIDIA V100 GPUs (only one supports GDR), dual 4-core CPU

Intel Xeon Silver 4112 CPU at 2.60 GHz, 128 GB of RAM, and 100

GbE Mellanox ConnectX-5 NIC. CPU frequency scaling is disabled

for all the machines. The machines run Ubuntu 18.04 (Linux 4.15.0),

CUDA 10.1 (where applicable), PyTorch 1.8.0a0 and NCCL 2.4.8.

For multi-GPU experiments, another testbed comprising of 6

multi-GPU servers and 6 CPU servers is used. Each machine is

equipped with 64-core Intel Xeon Gold 5218 CPU at 2.30 GHz. Each

GPU machine has 8 NVIDIA V100 GPUs, which are connected with

NVLink. These machines are networked at 100 Gbps.

Microbenchmark setup. For microbenchmarks, we use AllRe-

duce completion time as the performance metric. We collect mea-

surements at each worker for 200 iterations after 10 warm-ups.

Sparse tensors are generated randomly at each iteration. As the

baseline, we use the industry-standard ring AllReduce algorithm

implemented in NCCL and run it with TCP/IP at 10 Gbps, RDMA

and GDR at 100 Gbps.

Training workloads. We use six real-world models for the end-

to-end experiments, including two image classification models, two

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio

50
100
150

Ti
m

e
[m

s]

10

20

Ti
m

e
[m

s]

2 4 8
Workers

10

20

Ti
m

e
[m

s]

DP
DK

RD
M

A
GD

R

NCCL
O, 0%

O, 60%
O, 90%

O, 99%
Time at line rate
(ring AllReduce)

Figure 4: Time to complete AllReduce on 100 MB tensors. Dashed
lines show the optimal ring AllReduce time [49] based on the max-
imum goodput under line-rate bandwidth. 𝑂, 𝑠% denotes OmniRe-
duce on tensors with 𝑠% sparsity. The block size is 256. OmniReduce
runs at 10 Gbps with DPDK; at 100 Gbps with RDMA and GDR.

NLP models, and two recommendation models. Table 1 shows de-

tails of the models, datasets, and batch sizes. We observed that train-
ing throughput (the number of training samples processed per unit

of time) stabilizes after the first 100 iterations. Thus, we exclude

them and report performance for the subsequent 200 iterations.

We do not include training accuracy results because OmniReduce

merely skips zero blocks and does not affect accuracy; we do report

accuracy for block-based compression results. The end-to-end ex-

periments are done in both 10 Gbps and 100 Gbps networks (the

latter case only for RDMA and GDR).

6.1 Microbenchmarks
6.1.1 Comparison with dense AllReduce. We first compare OmniRe-

duce with NCCL on the most commonly used collective operation

for DDL: dense AllReduce. We devise this micro-benchmark atop

PyTorch by generating input tensors on the GPU and invoking

PyTorch’s all_reduce API from the torch.distributed package, with

the communication backend being OmniReduce or NCCL.

We tested tensor sizes from 100 MB to 1,000 MB, and observe

that tensor size has a low impact on the throughput. Therefore,

we only report results for 100 MB tensors. Moreover, to analyze

tensor sparsity’s influence on performance, we generate tensors

with different sparsity 𝑠 from 0% to 99%. All tensors are generated

randomly, and so non-zero blocks randomly overlap amongworkers.

We analyze the effects of overlap in §6.4.2.

Figure 4 shows the results as we vary the number of workers from

2 to 8 in three configurations. The results show that OmniReduce

achieves up to 6.3× and 5.5× speedup over NCCL at 99% sparsity

in 10 and 100 Gbps networks, respectively. With 60% sparsity or

more, OmniReduce always outperforms NCCL. When data is dense,

OmniReduce with two workers is slower than NCCL. Note that in

OmniReduce†
OmniReduce(Co)†
OmniReduce

NCCL†
NCCL

BytePS
SwitchML*

0 20 60 80 90 92 96 98 99
Sparsity [%]

0
2
4
6
8

10
12
14
16
18
20
22
24

Ti
m

e
[m

s]

Figure 5: Comparison of OmniReduce and other dense AllReduce
methods with RDMA or GDR (denoted with †) support in 100 Gbps
network. OmniReduce(Co) refers to the colocated version.

this case, the aggregation is not necessary because full-duplex com-

munication is the ideal strategy. However, we attribute this to two

factors: (1) The block size of 256 causes inefficient use of the net-

work bandwidth. As we increase the block size to 1024, OmniReduce

performance is close to NCCL for dense data with two workers; (2)

OmniReduce adds metadata (e.g., next) within each packet, which

is pure overhead when data is dense. The performance of RDMA-

based OmniReduce no longer improves significantly when sparsity

is higher than 90%, This is because the memory copy between GPU

and host memory becomes the bottleneck at 100 Gbps. GDR re-

duces this PCIe traffic, and so OmniReduce can benefit from higher

sparsity. Overall these performance gains confirm the previous

theoretical insights (§3.4) and the observation that non-zero block

overlap influences performance (sensitivity analysis in §6.4).

As expected, OmniReduce exhibits higher scalability than NCCL.

As the number of workers increases, OmniReduce with dense data

(𝑠 = 0%)maintains a constant AllReduce time, whereas that of NCCL

increases. However, when 𝑠 > 0%, OmniReduce’s performance

is affected by the number of workers, especially while 𝑠 < 90%.

Our performance model did not capture this behavior, and we

discuss this apparent gap: The model assumed a uniform block

sparsity across workers; however, the input tensors are generated

randomly within each worker in this experiment. Thus, workers are

likely to hold non-zero blocks distributed at different parts of the

tensor. As long as one worker holds a non-zero block at a certain

index, one round-trip time is needed, meaning that non-zero block

overlap conditions can influence OmniReduce’s performance. In

particular, the block sparsity decreases with a higher worker count.

Nevertheless, the performance speedup increases with the number

of workers.

We also compare OmniReduce with other state-of-the-art dense

AllReduce methods: BytePS [7] and SwitchML [58]. Figure 5 shows

the performance comparison with 8 workers at 100 Gbps as we

vary sparsity. Specifically, we use a server-based implementation of

SwitchML denoted as SwitchML*. BytePS and SwitchML* support

RDMA but do not run with GDR. The results show that BytePS

performs very closely to NCCL. SwitchML* has better performance

Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

0 20 60 80 90 92 96 98 99
Sparsity [%]

0
2
4
6
8

10
12
14
16

Sp
ee

du
p

OmniReduce-RDMA
OmniReduce-RDMA(Co)
OmniReduce-DPDK
SSAR_Split_allgather(SparCML)
DSAR_Split_allgather(SparCML)
AGsparse(NCCL)
AGsparse(Gloo)
Parallax
Dense(NCCL)

Figure 6: Comparison of OmniReduce and other sparse AllReduce
methods as sparsity varies in 10 Gbps network.

OmniReduce
Parallax

SSAR_Split_allgather(SparCML)
DSAR_Split_allgather(SparCML)

AGSparse(NCCL)
AGSparse(Gloo)

2 4 80
1

Sp
ee

du
p s=0%

2 4 80
1

s=60%

2 4 8
Workers

0

5

Sp
ee

du
p s=80%

2 4 8
Workers

0

5
s=96%

Figure 7: Scalability of OmniReduce and other sparse AllReduce
methods as workers and sparsity vary.

0 25 50 75 100 125 150
Timeline [ms]

Dense(NCCL)
Parallax

AGsparse(NCCL)
SSAR_Split_allgather(SparCML)

OmniReduce Dense to Sparse
Sparse to Dense

AllReduce

Figure 8: Breakdown of AllReduce execution (including format con-
version time) with 𝑠 = 99%.

for dense tensors due to its streaming aggregation protocol. RDMA-

based OmniReduce outperforms SwitchML* when the sparsity is

higher than 60%. When using GDR, OmniReduce in dedicated mode

is better than NCCL at any sparsity level, while colocated OmniRe-

duce outperforms NCCL only when the sparsity is more than 60%.

For dense tensors, colocated OmniReduce is worse than NCCL,

because it does not make full use of network bandwidth due to the

limited number of CPU cores in our testbed.

6.1.2 Comparison with other sparse AllReduce methods. We focus

on three sparse AllReduce approaches:

1) AGsparse, which PyTorch implemented for sparse format (key-

value pairs) tensors atop Gloo’s AllGather operation. We also im-

plement AGsparse atop NCCL.

2) Two SparCML [55] methods – SSAR_Split_allgather and DSAR-

_Split_allgather – that dominate performance for all SparCMLmeth-

ods in our experiments.

3) Parallax [34], which uses a parameter server (PS) to aggregate

DeepLight LSTM NCF BERT VGG19 ResNet1520.0

0.5

1.0

Sc
al

in
g

fa
ct

or NCCL OmniReduce

0.044 0.121 0.175
0.287

0.497

0.948

0.362

0.639

0.382 0.362

0.859
0.991

Figure 9: Scaling factor comparison of OmniReduce and NCCL in
10 Gbps network. Results for 8 workers; 2 and 4 workers are similar.
See Figure 1 for the definition of scaling factor.

sparse format tensors and NCCL AllReduce operations to aggregate

dense format tensors.

We compare the performance of OmniReduce with all these

sparse AllReduce methods using a 100 MB tensor, with sparsity

varying from 0% to 99%. The non-zero blocks randomly overlap

among workers. We exclude the format conversion overheads (for

now), i.e., we use dense format for Omnireduce and the baseline

(dense AllReduce using NCCL) while we use sparse format (key-

value pairs) for AGsparse and SparCML. We mimic the Parallax

runtime profiler by an ideal oracle: For each tensor, we separately

measure the sparse format performance with both the PS and the

dense format performance with AllReduce, then cherry-pick the

better one as Parallax’s performance.

To fairly compare with SparCML, we use the benchmark pro-

vided in the SparCML release [54] and we restrict it to the 10 Gbps

network since SparCML was prototyped and evaluated with 1 Gbps

(at 100 Gbps it has no sensible speedup even at high sparsity).

Figure 6 presents the performance of OmniReduce, AGsparse,

SparCML and Parallax normalized to the baseline in an 8-worker

setting. OmniReduce-RDMA(Co) denotes the case where the ag-

gregator processes are colocated with the workers. In dedicated

mode, OmniReduce outperforms all other approaches at any spar-

sity. In colocated mode, OmniReduce does not hurt performance

even for dense data and achieves up to 16× speedup. In fact, when

the sparsity is more than 80%, colocated OmniReduce matches the

performance of dedicated mode because at high sparsity and at 10

Gbps, 4 CPU cores for colocated mode are sufficient to make good

use of network bandwidth to transfer non-zero-blocks.

Compared to the baseline, both DPDK- and RDMA-based Om-

niReduce achieve at least 1.5× speedup and up to 6.3× and 16×
speedup at 𝑠 = 99%, respectively. SparCML, AGsparse (NCCL), and

Parallax are only beneficial when the tensor sparsity is higher than

90%, 98%, and 99%, respectively.

Figure 7 further shows the speedup for four sparsity levels as we

vary the number of workers from 2 to 8.
4
Following our theoretical

insights (§3.4), we expect OmniReduce to have the best scalability

and AGsparse to have the worst scalability. OmniReduce is only

affected by the number of workers 𝑁 to the extent that 𝑁 influences

global sparsity, whereas AGsparse scales poorly with the number

of workers (the speedup actually decreases). For dense tensors

(𝑠 = 0%), the speedup of OmniReduce increases with more workers.

When the sparsity is higher, the speedup of OmniReduce tends to

diminish as workers increase. This is because the non-zero blocks

4
Parallax is the same as NCCL; the PS is only effective at 99% sparsity.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio

DeepLight LSTM NCF BERT VGG19 ResNet1520

5

Sp
ee

du
p

10 Gbps
OmniReduce
SwitchML*
AGsparse(NCCL) with 1% compression

8.2

5.3

2.2
1.3 1.7 1.01.5 1.6 1.7 1.2 1.6 1.0

2.0 1.9 1.9
1.1 1.6

0.6

DeepLight LSTM NCF BERT VGG19 ResNet1520

2

Sp
ee

du
p

100 Gbps
2.9

1.4 1.5
1.0 1.0 1.01.3 1.0 1.0 1.0 1.0 1.0

0.3 0.4 0.4 0.3
0.8 0.6

Figure 10: Training performance speedup for 6 DNNs normalized to
dense AllReduce (NCCL).

Overlap DeepLight LSTM NCF BERT VGG19 ResNet152 sBERT
None 59.49% 18.10% 27.48% 0.60% 0.03% 0.01% 83.15%

2 11.94% 4.58% 17.78% 0.11% 0.02% 0.01% 12.81%

3 5.61% 1.98% 13.10% 0.04% 0.01% 0.00% 2.63%

4 3.40% 1.11% 10.29% 0.02% 0.01% 0.00% 0.78%

5 2.36% 0.71% 8.52% 0.01% 0.02% 0.00% 0.31%

6 1.85% 0.50% 7.60% 0.01% 0.06% 0.01% 0.14%

7 1.73% 0.40% 7.39% 0.01% 1.05% 0.01% 0.07%

All 13.62% 72.61% 7.85% 99.20% 98.79% 99.96% 0.11%

Table 2: Breakdown of OmniReduce communication (8 workers) by
the number of workers that overlap non-zero blocks. sBERT de-
notes BERT with 1% Block Top-𝑘 compression.

in every worker do not completely overlap, which overall results

in lower global sparsity. We study this effect in §6.4.

Table 2 breaks down the proportion of communication by the

extent of block overlap among workers. For example, among the

280 MB or 41% non-zero blocks (c.f. last column of Table 1) that

OmniReduce sends during the training of NCF, 7.85% of the blocks

fully overlap while 27.48% of them are from one worker only. The

observation also reflects that, while NCF has relatively high gradient

sparsity, the non-zero blocks do not overlap ideally, making the

performance gain smaller than expected.

Amongst other sparse methods, SparCML has better scalability

than AGsparse, especially the DSAR_Split_allgather method, whose

speedup always increases with more workers. This method’s bene-

fit comes from the automatic switch between sparse representation

and dense representation. According to the results in [55], this scala-

bility trend saturates at 16 workers, and the speedup then decreases

for higher worker counts. Nevertheless, OmniReduce outperforms

all SparCML methods at any sparsity with 2 to 8 workers.

6.1.3 Format conversion cost. The experiments above use either a

dense or sparse format input matching each method’s assumption.

In practice, our DNNs use dense tensors, and format conversion is

required for AGsparse and SparCML. Figure 8 illustrates the total

AllReduce time when including format conversion costs. These

overheads increase with lower sparsity. In this scenario, OmniRe-

duce’s advantages are even more apparent.

6.2 End-to-end training
We demonstrate that OmniReduce increases scalability and acceler-

ates training for real-world DNNs (Table 1).

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

F1 score SpeedUp

No Compression
Block Random-k

Block Threshold-v
Block Top-k Ratio

Block Top-k
90.5

91.0

91.5

92.0

F1
 sc

or
e

Figure 11: BERT training accuracy and speedup with OmniReduce
with different blck-based compression methods.

6.2.1 Scalability. As discussed, inefficient collective communica-

tion in DDL results in poor scalability. Figure 9 shows that OmniRe-

duce improves the scalability in every DNN benchmark, whereas

the scaling factors for NCCL decrease with more workers. Om-

niReduce outperforms NCCL in these workloads and achieves a

substantial scalability improvement, especially with large DNNs:

8.2× for DeepLight and 5.3× for LSTM.

6.2.2 Training speedup. To tease out the contribution of spar-

sity versus streaming aggregation in OmniReduce’s performance

improvement, we also compare OmniReduce performance with

SwitchML*, which only supports streaming aggregation. Figure

10 shows the training speedup of OmniReduce, SwitchML* and

AGsparse (NCCL) relative to dense AllReduce in an 8-worker setup.

OmniReduce accelerates training by up to 8.2× compared to NCCL

at 10 Gbps. For certain DNNs, e.g., ResNet152, there is no speedup.

This is expected because not every DNN is network-bound [69].

However, OmniReduce does not decrease performance in this case.

Moreover, the speedup is understandablymore significant for DNNs

with high gradient sparsity. For models with low sparsity like BERT,

VGG19, and ResNet152, OmniReduce performance is the same as

SwitchML* because only streaming aggregation contributes to the

speedup in this case. For models with high sparsity like Deep-

Light, LSTM and NCF, OmniReduce performance is much better

than SwitchML*. The performance gain comes from avoiding zero

blocks transmission in OmniReduce. OmniReduce also outperforms

AGsparse (NCCL) and provides benefits even at 100 Gbps. We now

elaborate on these results.

Since AGsparse methods are beneficial only at high sparsity

(§6.1), we apply gradient compression at 1% (𝑠 = 99%) before in-

voking AGsparse AllReduce. To focus on collective communication

performance, we do not consider compression overheads (even

though they may be prohibitive in practice [40, 68]). The results

show that AGsparse (NCCL) achieves a lower speedup than Om-

niReduce at 10 Gbps and is not effective at 100 Gbps; this is due

to the format conversion overheads that become the main perfor-

mance bottleneck. SparCML and Parallax do not integrate with

PyTorch, thus we do not use them in these experiments.

At 100 Gbps, OmniReduce provides benefits in the range 1.4× to

2.9× for half of the workloads and precisely for the DNNs with a

large proportion of embedding weights that yield gradients with

more than 84% sparsity (Table 1). BERT also has large embedding

weights, but they only account for a minor part (∼ 20%) of the

model. We next show how OmniReduce with block-based gradient

compression accelerates the BERT workload.

Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

0 1000 2000 3000 4000 5000
Iter

2

4

6

Lo
ss

Block RandomK
Block TopK
Block TopK Ratio

Block Threshold
None

Figure 12: BERT median training (finetuning) loss of 10 runs. Data
points are applied EMA smoothing with 𝛼 = 0.5.

10

15

20

Ti
m

e
[m

s]

NCCL
O, 0%

O, 60%
O, 90%

O, 99%

Figure 13: Time to complete AllReduce on 100 MB tensors in the
multi-GPU scenario.

DeepLight LSTM NCF BERT VGG19 ResNet1520

1

2

Sp
ee

du
p

NCCL
OmniReduce

2.6

1.3 1.3
1.0 1.1 1.0

Figure 14: Training performance speedup to NCCL in the multi-
GPU scenario.

6.2.3 OmniReduce speedup with block-based compression. We ap-

ply all 4 block-based compression methods introduced in §4 to

speedup the BERT workload, which consists of a large model (1.2

GB), but its gradient sparsity is only ∼ 9%. We use 0.1664 as thresh-

old (which results in ∼ 1% compression ratio) and otherwise ap-

ply 𝑘 = 1% compression ratio. While evaluating the performance

speedup relative to NCCL, we also track the model accuracy (F1

score). We repeat the experiments ten times and plot ranges with

quartiles. We fine-tune BERT for the question answering task on

the Stanford Question Answering Dataset [53].

Figure 11 shows these results for an 8-worker setup at 10 Gbps.

OmniReduce now accelerates training by ∼ 1.7×. The training loss

change shown in Figure 12 reveals that block-based compression

methods can preserve convergence for BERT. Compression affects

accuracy slightly (at most a 1-point drop in F1 score), highlighting

the trade-off between speedup and accuracy, which depends on the

compression level.

6.3 Multi-GPU and multi-node scenario
Lastly, we evaluate OmniReduce in a multi-GPU and multi-node

testbed consisting of 6 × 8-GPU servers as workers and 6 CPU

0 20 60 80 90 92 96 98 99
Sparsity [%]

50

100

Ti
m

e
[m

s]

BF
NBF
bs=32

bs=64
bs=128
bs=256

Figure 15: Influence of block size (𝑏𝑠) and sparsity.𝐵𝐹 and𝑁𝐵𝐹 refer
to OmniReduce w/ or w/o Block Fusion, respectively.

1 32 64 128 256 352
Block size

0

50

100

Bl
oc

k
sp

ar
sit

y
[%

]

1 32 64 128 256 352
Block size

0

50

100

De
ns

ity
 w

ith
in

 b
lo

ck
 [%

]

DeepLight LSTM NCF BERT VGG19 ResNet152

Figure 16: Block sparsity and density within block of gradients for
DNN models.

servers as aggregators. We run both microbenchmarks and end-to-

end training experiments.

Figure 13 shows the microbenchmark results as we vary the ten-

sor sparsity. We follow a setup similar to §6.1. The results show that

even in the multi-GPU and multi-node environment, OmniReduce

always outperforms NCCL and achieves up to 2.5× speedup over

NCCL at 99% sparsity.

Figure 14 shows the end-to-end training speedup of OmniReduce

relative to NCCL in the multi-GPU and multi-node setup. For mod-

els with high sparsity like DeepLight, LSTM and NCF, OmniReduce

has a speedup ranging 1.3× to 2.6×. Even for the models with low

sparsity, OmniReduce does not negatively affect performance.

6.4 Sensitivity analysis
6.4.1 Block size. Figure 15 shows how block sparsity influences the

performance of OmniReduce w/ and w/o Block Fusion for various

choices of the block size.Without Block Fusion, OmniReduce is very

sensitive to block size, especially for data with low sparsity. This is

because a larger block size is better at amortizing the per-packet

metadata overheads. The results demonstrate that the Block Fusion

method improves the performance stability for OmniReduce.

Figure 16 shows the effective sparsity as a function of block size

for various DNNs. A block size of one identifies the real gradient

sparsity. Models with large embedding layers can maintain large

block sparsity at packet-size blocks. Notably, the density of non-

zero values within each block does not decrease too drastically in

many cases. Given these characteristics of block sparsity in relation

to performance and density within a block, we choose block size

256 as the default for our setting.

6.4.2 Overlap of non-zero blocks. Two extremes exist: (1) all non-

zero blocks overlap at every worker, and (2) no non-zero block

overlaps among 𝑁 workers. Dense AllReduce (on the non-zero

blocks only) and AGsparse ideally address these extremes, whereas

OmniReduce – while capable of handling the entire spectrum – is

best suited for when data is sparse and block overlap somewhat.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio

2 4 80

100

Ti
m

e
[m

s] s=0%

Random overlap
None overlap

All overlap

2 4 80
50

s=90%

2 4 8
Workers

0
25

Ti
m

e
[m

s] s=96%

2 4 8
Workers

0

25
s=99%

Figure 17: Effect of non-zero element overlap amongworkers on the
OmniReduce performance.

0 20 60 80 90 92 96 98 99
Sparsity [%]

0.0

2.5

5.0

Sp
ee

du
p

P4 aggregator(34)
P4 aggregator(256)
Server aggregator
Dense(NCCL)

Figure 18: OmniReduce in-network P4 aggregator compared to
server-based aggregator for two block sizes (34 and 256).

Figure 17 shows the AllReduce time for the extremes as well as

with an amount of overlap generated at random. It is noteworthy

that at both no sparsity (𝑠 = 0%) or very high sparsity (𝑠 > 95%), the

impact of overlap is small or none. This is because the total number

of elements of a dense tensor is equal to 𝑆 in all cases, while 𝑁𝐷𝑆

is close to 𝐷𝑆 if the tensor is very sparse. Recall that we denote 𝐷

as the average data density and 𝑆 the tensor size. However, when

𝑠 ∈ [60%, 90%], the “all overlap” performance is significantly better

than the other cases.

7 EXTENSIONS
In-network aggregation. SwitchML [58], Mellanox SHARP [44]

and ATP [38] recently demonstrated the feasibility of streaming

collective aggregation protocols where the aggregation takes place

within network switches. OmniReduce lends itself to these advance-

ments. In particular, because the time and space complexity of the

OmniReduce aggregator is low and the aggregation function is the

arithmetic sum, we demonstrate that the aggregator can run on

suitable network switches.

We implement Algorithm 2 in P4 [5] and offload it to a Barefoot

Tofino switch. Figure 18 shows that with this offload, OmniReduce

is slightly faster than with the server-based aggregator. This imple-

mentation inherits some of the limitations described by Sapio et

al. [58] in terms of numeric representation and slot size. However,

SHARPv2 [44] demonstrated that 100 Gbps line-rate aggregation

of floating-point values is within reach for current technology and

there is recent work exploring in-network sparse reductions [59].

Generalized collective operations. We observe that our algo-

rithms generalize to three collective operations: AllReduce, All-

Gather, and Broadcast. In fact, AllGather can be viewed as a sparse

AllReduce with no block overlap. Broadcast is a more straightfor-

ward case in which there is no block overlap, and the tensor size of

𝑁 − 1 workers is 0. In these cases, the aggregator realizes both a

multicast function and flow control mechanism to coordinate col-

lective communication. By not sending zero blocks, OmniReduce

improves the efficiency for these collectives.

Numeric reproducibility and non-commutative operations.
Due to the numeric representation of floating-point values, sum is

not generally a commutative operator. OmniReduce can support

numeric reproducibility and non-commutative operators by enforc-

ing a serial order of slot updates. At the cost of a larger pool of slots,

one can modify our algorithms so that every slot is writable by one

worker at a time, in a pre-defined sequence, while pipelining slot

updates for efficiency. For example, in an 𝑁 worker group, worker

1 is 𝑁 −1 blocks ahead of worker 𝑁 , worker 2 is 𝑁 −2 blocks ahead,
and so on. The overhead for doing so is that slot aggregation la-

tency increases with𝑂 (log
2
𝑁); throughput, however, is unaffected.

Signaling information to synchronize progress can be piggybacked

by data packets to lower overheads.

8 OTHER RELATEDWORK
Efficient communication in DDL. Several efforts optimize DDL

communication ranging from designing high-performance PS soft-

ware [43] and transfer scheduler [20, 25, 50], to improving collec-

tive communication in heterogeneous networks fabrics [10, 28] and

within multi-GPU servers [66], to developing in-network reduction

systems [35, 39, 44, 57, 58], to customizing network congestion pro-

tocols and architecture [18]. OmniReduce leverages data sparsity

to optimize communication and is complementary to these efforts.

Accelerating DDL. Orthogonal to our work, various works pro-

pose efficient distributed optimization algorithms [4, 36, 41, 72].

Besides data parallelism, other parallelization strategies include

model parallelism [9, 11], and hybrids of model and data paral-

lelism [26, 27]. Going one step further, pipeline parallelism [46]

processes multiple batches simultaneously, with individual layers

either having model or data parallelism. OmniReduce speeds up

the data parallel aspect of these works.

9 CONCLUSION
We leverage sparsity in distributed deep learning to accelerate train-

ing for six real-world DNNs by up to 8.2×. OmniReduce is a generic

collective communication primitive aiming especially at efficiently

aggregating sparse data. We proposed streaming aggregation algo-

rithms that outperform previous approaches, surpassing them by

3.5–16×. Our approach runs efficiently on a server, yet its modest

computational complexity affords it to run on programmable switch

ASICs. OmniReduce has already spurred adoption for large scale

training workloads at Meituan.

Acknowledgments
We are grateful to Arvind Krishnamurthy, Jacob Nelson and Dan R. K. Ports for their

helpful suggestions. We are thankful to Meituan for granting us access to a multi-GPU

server testbed. We thank our shepherd, Kate Lin, and the anonymous reviewers for

their helpful feedback. This publication is based upon work supported by the King

Abdullah University of Science and Technology (KAUST) Office of Sponsored Research

(OSR) under Award No. OSR-CRG2020-4382. For computer time, this research used

the resources of the Supercomputing Laboratory at KAUST. The work of Jiawei Fei at

KAUST is supported by a sponsorship from China Scholarship Council (CSC). This

work was partially supported by a gift in kind from Huawei.

Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse Communication for Dis-

tributed Gradient Descent. In EMNLP-IJCNLP.
[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.

QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding.

In NeurIPS.
[3] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit

Khirirat, and Cédric Renggli. 2018. The Convergence of Sparsified Gradient

Methods. In NeurIPS.
[4] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. 2019. Qsparse-local-

SGD: Distributed SGDwith Quantization, Sparsification, and Local Computations.

In NeurIPS.
[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and

David Walker. 2014. P4: Programming Protocol-independent Packet Processors.

SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014).

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.

arXiv:2005.14165 [cs.CL]

[7] bytedance/byteps. 2019. A High Performance and Generic Framework for Dis-

tributed DNN Training. https://github.com/bytedance/byteps.

[8] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp

Koehn, and Tony Robinson. 2013. One Billion Word Benchmark for Measuring

Progress in Statistical Language Modeling. arXiv:1312.3005 [cs.CL]

[9] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

2014. Project Adam: Building an Efficient and Scalable Deep Learning Training

System. In OSDI.
[10] Minsik Cho, Ulrich Finkler, David S. Kung, and Hillery C. Hunter. 2019. BlueCon-

nect: Decomposing All-Reduce for Deep Learning on Heterogeneous Network

Hierarchy. In MLSys.
[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and

Andrew Ng. 2012. Large Scale Distributed Deep Networks. In NeurIPS.
[12] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin.

2020. DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR

Predictions in Ad Serving. arXiv:2002.06987 [cs.LG]

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv:1810.04805 [cs.CL]

[14] Nikoli Dryden, Sam Ade Jacobs, Tim Moon, and Brian Van Essen. 2016. Commu-

nication Quantization for Data-Parallel Training of Deep Neural Networks. In

MLHPC.
[15] Aritra Dutta, El Houcine Bergou, Ahmed M. Abdelmoniem, Chen-Yu Ho,

Atal Narayan Sahu, Marco Canini, and Panos Kalnis. 2020. On the Discrepancy

between the Theoretical Analysis and Practical Implementations of Compressed

Communication for Distributed Deep Learning. In AAAI.
[16] Facebook. 2021. Gloo. https://github.com/facebookincubator/gloo.

[17] Message Passing Interface Forum. 1994.MPI: AMessage-Passing Interface Standard.
Technical Report. University of Tennessee.

[18] Nadeen Gebara, Paolo Costa, and Manya Ghobadi. 2021. In-network Aggregation

for Shared Machine Learning Clusters. In MLSys.
[19] F Maxwell Harper and Joseph A Konstan. 2015. The MovieLens Datasets: History

and Context. ACM Trans. Interact. Intell. Syst. 5, 4 (Dec. 2015).
[20] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell. 2019. TicTac:

Accelerating Distributed Deep Learning with Communication Scheduling. In

MLSys.
[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In CVPR.
[22] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In WWW.

[23] Michael Hofmann and Gudula Rünger. 2008. MPI Reduction Operations for

Sparse Floating-point Data. In EuroPVM/MPI.
[24] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng

Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline

Parallelism. In NeurIPS.
[25] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady

Pekhimenko. 2019. Priority-based Parameter Propagation for Distributed DNN

Training. In MLSys.
[26] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. 2018. Exploring Hidden

Dimensions in Parallelizing Convolutional Neural Networks. In ICML.

[27] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model

Parallelism for Deep Neural Networks. In MLSys.
[28] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.

2020. A Unified Architecture for Accelerating Distributed DNN Training in

Heterogeneous GPU/CPU Clusters. In OSDI.
[29] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.

2016. Exploring the Limits of Language Modeling. arXiv:1602.02410 [cs.CL]

[30] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi.

2019. Error Feedback Fixes SignSGD and other Gradient Compression Schemes.

In ICML.
[31] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,

and Ping Tak Peter Tang. 2017. On Large-Batch Training for Deep Learning:

Generalization Gap and Sharp Minima. In ICLR.
[32] Janis Keuper and Franz-Josef Pfreundt. 2016. Distributed Training of Deep Neural

Networks: Theoretical and Practical Limits of Parallel Scalability. In MLHPC.
[33] J. Kiefer and J. Wolfowitz. 1952. Stochastic Estimation of the Maximum of a

Regression Function. The Annals of Mathematical Statistics 23, 3 (1952), 462–466.
[34] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeonmin

Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun. 2019. Parallax: Sparsity-

aware Data Parallel Training of Deep Neural Networks. In EuroSys.
[35] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry Dennison. 2020. An In-

Network Architecture for Accelerating Shared-Memory Multiprocessor Collec-

tives. In ISCA.
[36] Anastasia Koloskova, Sebastian U Stich, andMartin Jaggi. 2019. Decentralized Sto-

chastic Optimization and Gossip Algorithms with Compressed Communication.

In ICML.
[37] Kelly Kostopoulou, Hang Xu, Aritra Dutta, Xin Li, Alexandros Ntoulas, and

Panos Kalnis. 2021. DeepReduce: A Sparse-tensor Communication Framework

for Distributed Deep Learning. arXiv:2102.03112 [cs.LG]

[38] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya

Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-tenant

Learning. In NSDI.
[39] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian

Huang. 2019. Accelerating Distributed Reinforcement Learning with In-Switch

Computing. In ISCA.
[40] Youjie Li, Jongse Park, Mohammad Alian, Yifan Yuan, Zheng Qu, Peitian Pan,

Ren Wang, Alexander Schwing, Hadi Esmaeilzadeh, and Nam Sung Kim. 2018.

A Network-Centric Hardware/Algorithm Co-Design to Accelerate Distributed

Training of Deep Neural Networks. In Micro.
[41] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. 2019. Don’t

Use Large Mini-batches, Use Local SGD. In ICLR.
[42] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William Dally. 2018. Deep

Gradient Compression: Reducing the Communication Bandwidth for Distributed

Training. In ICLR.
[43] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishna-

murthy. 2018. PHub: Rack-Scale Parameter Server for Distributed Deep Neural

Network Training. In SoCC.
[44] Mellanox. 2021. Scalable Hierarchical Aggregation and Reduction Protocol

(SHARP). https://www.mellanox.com/products/sharp.

[45] Microsoft. 2015. Criteo’s 1TB Click Prediction Dataset. https:

//docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-

azure-ml-criteos-1tb-click-prediction-dataset.

[46] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R

Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.

PipeDream: Generalized Pipeline Parallelism for DNN Training. In SOSP.
[47] NVIDIA. 2021. Ampere Architecture In-Depth. https://devblogs.nvidia.com/

nvidia-ampere-architecture-in-depth/.

[48] NVIDIA. 2021. Collective Communication Library (NCCL). https://developer.

nvidia.com/nccl.

[49] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth Optimal All-reduce Algorithms

for Clusters of Workstations. J. Parallel and Distrib. Comput. 69, 2 (2009).
[50] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan

Wu, and Chuanxiong Guo. 2019. A Generic Communication Scheduler for Dis-

tributed DNN Training Acceleration. In SOSP.
[51] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word

representations. arXiv:1802.05365 [cs.CL]

[52] pytorch/pytorch. 2019. Support sparse gradients in DistributedDataParallel.

https://github.com/pytorch/pytorch/pull/22037.

[53] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. KnowWhat You Don’t Know:

Unanswerable Questions for SQuAD. arXiv:1806.03822 [cs.CL]

[54] Cedric Renggli. 2019. SparCML. https://gitlab.com/rengglic/SparCML.

[55] Cedric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Alistarh, and Torsten

Hoefler. 2019. SparCML: High-Performance Sparse Communication for Machine

Learning. In SC.
[56] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C

Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.

https://arxiv.org/abs/2005.14165
https://github.com/bytedance/byteps
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/2002.06987
https://arxiv.org/abs/1810.04805
https://github.com/facebookincubator/gloo
https://arxiv.org/abs/1602.02410
https://arxiv.org/abs/2102.03112
https://www.mellanox.com/products/sharp
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://arxiv.org/abs/1802.05365
https://github.com/pytorch/pytorch/pull/22037
https://arxiv.org/abs/1806.03822
https://gitlab.com/rengglic/SparCML

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio

International Journal of Computer Vision 115, 3 (2015).

[57] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos

Kalnis. 2017. In-Network Computation is a Dumb Idea Whose Time Has Come.

In HotNets.
[58] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,

Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K. Ports, and

Peter Richtárik. 2021. Scaling Distributed Machine Learning with In-Network

Aggregation. In NSDI.
[59] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashkboos, Shigang Li, and Torsten

Hoefler. 2021. Flare: Flexible In-Network Allreduce. arXiv:2106.15565 [cs.DC]

[60] Hongzhang Shan, Samuel Williams, and Calvin W. Johnson. 2018. Improving

MPI Reduction Performance for Manycore Architectures with OpenMP and Data

Compression. In PMBS.
[61] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In ICLR.
[62] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018. Sparsified

SGD with Memory. In NeurIPS.
[63] Nikko Strom. 2015. Scalable Distributed DNN Training Using Commodity GPU

Cloud Computing. In ISCA.
[64] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of

Collective Communication Operations in MPICH. Int. J. High Perform. Comput.
Appl. 19, 1 (Feb. 2005).

[65] Jesper Larsson Träff. 2010. Transparent Neutral Element Elimination in MPI

Reduction Operations. In EuroMPI.
[66] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin,

Nikhil Devanur, and Ion Stoica. 2020. Blink: Fast and Generic Collectives for

Distributed ML. In MLSys.
[67] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai

Li. 2017. TernGrad: Ternary Gradients to Reduce Communication in Distributed

Deep Learning. In NeurIPS.
[68] HangXu, Chen-YuHo, AhmedM. Abdelmoniem, Aritra Dutta, El Houcine Bergou,

Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. 2021. GRACE: A

Compressed Communication Framework for Distributed Machine Learning. In

ICDCS.
[69] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin Jin.

2020. Is Network the Bottleneck of Distributed Training?. In NetAI.
[70] Huasha Zhao and John Canny. 2014. Kylix: A Sparse Allreduce for Commodity

Clusters. In ICPP.
[71] Shuai Zheng, Ziyue Huang, and James Kwok. 2019. Communication-Efficient

Distributed Blockwise Momentum SGD with Error-Feedback. In NeurIPS.
[72] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma,

and Tie-Yan Liu. 2017. Asynchronous Stochastic Gradient Descent with Delay

Compensation. In ICML.

Appendices are supporting material that has not been peer-reviewed.

A PACKET LOSS RECOVERY
We now extend our design to support packet retransmission to ac-

count for lossy network environments. First, we revisit Algorithm 1

and see how it would fail in the presence of packet loss. A packet

loss in the upward path from worker to aggregator prevents the

aggregator from completing block aggregation. Whereas, the loss of

one of the result packets sent to the workers on the downward path

(aggregator to worker) not only keeps a worker from obtaining the

aggregated block, but may also stop the worker from sending the

next block, and halt the entire aggregation.

To tolerate packet loss, we include acknowledgment packets and

use a timer mechanism to detect losses. Further, the aggregator

keeps two versions of its per-slot state. The revised algorithm is

listed in Algorithm 2. Note that this description includes the pool

of 𝑆 slots, one per stream used by independent worker threads.

Every time the worker receives a packet, it responds to the ag-

gregator for the requested block. However, when the aggregator

requests a block that the worker would not send (a zero block), the

worker only sends an ack. packet with no payload. The worker

associates a timer to every transmitted packet; if the timer fires,

the worker assumes packet loss and retransmits it. The aggregator

has a 𝑐𝑜𝑢𝑛𝑡 of aggregated packets; a result packet is sent only once

GPU memory

Buffer

Host memory

Chunk 0 Chunk 0

cudaMemcpyAsync memcpy

Chunk 1

Chunk n

…
Non-zero
blocks

NICRDMA

Chunk 1

Figure 19: Workflow of chunk prefetch optimization for systems
without GDR support.

the 𝑐𝑜𝑢𝑛𝑡 reaches the number of workers 𝑁 . To avoid (incorrectly)

aggregating duplicate transmissions, the aggregator maintains a

boolean vector 𝑠𝑒𝑒𝑛 that tracks which worker’s packet has been

processed.

Put together, the approach above ensures that single-sided timers

are sufficient to recover from packet loss, regardless of whether

a loss occurs on the upward or downward path. However, the

aggregator must be able to retransmit a dropped result packet to

worker 𝑖 even after a different worker 𝑗 has already sent its next

non-zero block addressing the same slot. This requires two versions

of each 𝑠𝑙𝑜𝑡 that are used in alternate phases. When the worker

receives the resulting packet from the aggregator, it changes the

𝑠𝑙𝑜𝑡 version by flipping 𝑝.𝑣𝑒𝑟 before sending the next block to the

aggregator. Each version of a 𝑠𝑙𝑜𝑡 gets reused only when it is certain

that all workers have received the aggregated result in that 𝑠𝑙𝑜𝑡 .

This happens when all workers have sent their blocks to the other

version of that 𝑠𝑙𝑜𝑡 , signaling that all workers have moved forward.

B IMPLEMENTATION DETAILS
In OmniReduce, only non-zero blocks will be copied to the trans-

mission buffer. Nevertheless, copying blocks from GPU memory to

host memory is still the bottleneck when the network bandwidth

is close to the PCIe bandwidth (128Gbps for PCIe gen3). Because

OmniReduce only copies one block (<1KB) at a time, and we find

small data copy between GPU and host inefficient, We propose and

implement two solutions respectively for systems with and without

GDR support as follows:

GPU-direct RDMA. GDR only supports GPUs connected to the

same PCIe switch as RDMA NIC. For machines that support GDR,

we do not use buffers. Instead, we send non-zero blocks directly

from GPU to aggregators with the support of GDR. OmniReduce

has larger benefits with GDR as it reduces the PCIe traffic.

Chunk prefetch. Figure 19 shows our solution when machines do

not support GDR. Firstly, we copy all the data (including zero and

non-zero blocks) from GPU to host in chunk (4MB) asynchronously

(𝑐𝑢𝑑𝑎𝑀𝑒𝑚𝑐𝑝𝑦𝐴𝑠𝑦𝑛𝑐). At the same time, worker threads check the

completion of the copy event (𝑐𝑢𝑑𝑎𝐸𝑣𝑒𝑛𝑡𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒) and will

copy non-zero block from the completed chunk to the commu-

nication buffer. Once blocks are received from aggregators, they

will be written to the chunk in host memory, and this chunk will

be copied to the GPU memory (𝑐𝑢𝑑𝑎𝑀𝑒𝑚𝑐𝑝𝑦𝐴𝑠𝑦𝑛𝑐) if all blocks in

it are aggregated completely. With this solution, the memory copy

operation between GPU and host is almost completely overlapped

with the communication.

https://arxiv.org/abs/2106.15565

Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Algorithm 2: Block aggregation w/ loss recovery

1 At Worker:
2 𝑝.𝑛𝑒𝑥𝑡, 𝑛𝑒𝑥𝑡 ← first non-zero block past block 0

3 𝑝.𝑏𝑙𝑜𝑐𝑘, 𝑝.𝑣𝑒𝑟 ← 0

4 𝑝.𝑠𝑡𝑟𝑒𝑎𝑚 ← stream/thread ID 𝑠

5 𝑝.𝑤𝑖𝑑 ← worker ID

6 𝑝.𝑑𝑎𝑡𝑎 ← 𝐺𝑠 [0 : 𝑏𝑠]
7 send 𝑝 to 𝑎𝑔𝑔; start_timer(𝑝)

8 repeat upon receive p(data, ver, block, next, stream, wid)
9 cancel_timer(𝑝)

10 𝐺𝑠 [𝑝.𝑏𝑙𝑜𝑐𝑘 : 𝑝.𝑏𝑙𝑜𝑐𝑘 + 𝑏𝑠] ← 𝑝.𝑑𝑎𝑡𝑎

11 𝑝.𝑣𝑒𝑟 ← (𝑝.𝑣𝑒𝑟 + 1)%2
12 if 𝑝.𝑛𝑒𝑥𝑡 = 𝑛𝑒𝑥𝑡 then
13 𝑝.𝑏𝑙𝑜𝑐𝑘 ← 𝑛𝑒𝑥𝑡

14 𝑝.𝑑𝑎𝑡𝑎 ← 𝐺𝑠 [𝑛𝑒𝑥𝑡 : 𝑛𝑒𝑥𝑡 + 𝑏𝑠]
15 𝑝.𝑛𝑒𝑥𝑡, 𝑛𝑒𝑥𝑡 ←next non-zero block or else∞
16 𝑝.𝑤𝑖𝑑 ← worker ID

17 send 𝑝 to 𝑎𝑔𝑔; start_timer(𝑝)

18 else
19 𝑝.𝑛𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡

20 𝑝.𝑑𝑎𝑡𝑎 ← {0} // empty packet payload
21 send 𝑝 to 𝑎𝑔𝑔; start_timer(𝑝)

22 until 𝑝.𝑛𝑒𝑥𝑡 = ∞
23 upon timeout for 𝑝 // timeout handler
24 send 𝑝 to 𝑎𝑔𝑔; start_timer(𝑝)

25 At Aggregator:
26 for 𝑠 in 0 . . . 𝑆 − 1 do // pool initialization, 2-way versioned
27 𝑠𝑙𝑜𝑡𝑠 [2] := {0}
28 𝑠𝑒𝑒𝑛𝑠 [2, 𝑁], 𝑐𝑜𝑢𝑛𝑡𝑠 [2] := {0}
29 𝑚𝑖𝑛_𝑛𝑒𝑥𝑡𝑠 := ∞
30 forever upon receive p(data, ver, block, next, stream, wid)
31 𝑠 ← 𝑝.𝑠𝑡𝑟𝑒𝑎𝑚 // reference 𝑝’s slot
32 if 𝑠𝑒𝑒𝑛𝑠 [𝑝.𝑣𝑒𝑟, 𝑝.𝑤𝑖𝑑] = 0 then
33 𝑠𝑒𝑒𝑛𝑠 [𝑝.𝑣𝑒𝑟, 𝑝.𝑤𝑖𝑑] ← 1

34 𝑠𝑒𝑒𝑛𝑠 [(𝑝.𝑣𝑒𝑟 + 1)%2, 𝑝.𝑤𝑖𝑑] ← 0

35 𝑐𝑜𝑢𝑛𝑡𝑠 [𝑝.𝑣𝑒𝑟] ← (𝑐𝑜𝑢𝑛𝑡𝑠 [𝑝.𝑣𝑒𝑟] + 1)%𝑁
36 if 𝑐𝑜𝑢𝑛𝑡𝑠 [𝑝.𝑣𝑒𝑟] = 1 then
37 𝑠𝑙𝑜𝑡𝑠 [𝑝.𝑣𝑒𝑟] ← 𝑝.𝑑𝑎𝑡𝑎

38 𝑚𝑖𝑛_𝑛𝑒𝑥𝑡𝑠 ← 𝑝.𝑛𝑒𝑥𝑡

39 else
40 𝑠𝑙𝑜𝑡𝑠 [𝑝.𝑣𝑒𝑟] ← 𝑠𝑙𝑜𝑡𝑠 [𝑝.𝑣𝑒𝑟] + 𝑝.𝑑𝑎𝑡𝑎
41 𝑚𝑖𝑛_𝑛𝑒𝑥𝑡𝑠 ← min(𝑚𝑖𝑛_𝑛𝑒𝑥𝑡𝑠 , 𝑝.𝑛𝑒𝑥𝑡)
42 if 𝑐𝑜𝑢𝑛𝑡𝑠 [𝑝.𝑣𝑒𝑟] = 0 then
43 𝑝.𝑑𝑎𝑡𝑎 ← 𝑠𝑙𝑜𝑡𝑠 [𝑝.𝑣𝑒𝑟]
44 𝑝.𝑛𝑒𝑥𝑡 ←𝑚𝑖𝑛_𝑛𝑒𝑥𝑡𝑠
45 send 𝑝 to all workers

46 else
47 if 𝑐𝑜𝑢𝑛𝑡𝑠 [𝑝.𝑣𝑒𝑟] = 0 then
48 𝑝.𝑑𝑎𝑡𝑎 ← 𝑠𝑙𝑜𝑡𝑠 [𝑝.𝑣𝑒𝑟]
49 send 𝑝 to 𝑝.𝑤𝑖𝑑

Algorithm 3: Extension to sparse format

1 At Worker:
2 𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥 := 𝑏𝑠

3 𝑝.𝑛𝑒𝑥𝑡𝑘𝑒𝑦 := 𝐾 [𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥]
4 𝑝.𝑘𝑒𝑦𝑠 ← 𝐾 [0 : 𝑏𝑠]
5 𝑝.𝑣𝑎𝑙𝑢𝑒𝑠 ← 𝑉 [0 : 𝑏𝑠]
6 𝑝.𝑤𝑖𝑑 ←Worker ID

7 send 𝑝 to 𝑎𝑔𝑔

8 repeat upon receive p(keys, values, nextkey, wid)
9 update 𝐾,𝑉 according to 𝑝.𝑘𝑒𝑦𝑠 , 𝑝.𝑣𝑎𝑙𝑢𝑒𝑠

10 if 𝑝.𝑛𝑒𝑥𝑡𝑘𝑒𝑦 ≥ 𝐾 [𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥] then
11 𝑝.𝑘𝑒𝑦𝑠 ← 𝐾 [𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥 : 𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥 + 𝑏𝑠]
12 𝑝.𝑣𝑎𝑙𝑢𝑒𝑠 ← 𝑉 [𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥 : 𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥 + 𝑏𝑠]
13 𝑝.𝑛𝑒𝑥𝑡𝑘𝑒𝑦 ← 𝐾 [𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥 + 𝑏𝑠]
14 𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥 ← 𝑛𝑒𝑥𝑡𝑘𝑒𝑦_𝑖𝑑𝑥 + 𝑏𝑠
15 𝑝.𝑤𝑖𝑑 ←Worker ID

16 send 𝑝 to 𝑎𝑔𝑔

17 end
18 until update 𝐾,𝑉 is complete

19 At Aggregator:
20 𝑛𝑒𝑥𝑡𝑘𝑒𝑦 [𝑁] := {−∞}
21 𝑠𝑒𝑛𝑡 := 0

22 forever upon receive p(keys, values, nextkey, wid)
23 𝑛𝑒𝑥𝑡𝑘𝑒𝑦 [𝑝.𝑤𝑖𝑑] ← 𝑝.𝑛𝑒𝑥𝑡𝑘𝑒𝑦

24 𝑠𝑒𝑛𝑑_𝑢𝑝_𝑡𝑜 ← min(𝑛𝑒𝑥𝑡𝑘𝑒𝑦)
25 update 𝐾,𝑉 accordingly

26 if 𝑠𝑒𝑛𝑑_𝑢𝑝_𝑡𝑜 > 𝑠𝑒𝑛𝑡 then
27 𝑝.𝑘𝑒𝑦𝑠 ← keys from 𝑠𝑒𝑛𝑡 to 𝑠𝑒𝑛𝑑_𝑢𝑝_𝑡𝑜 in 𝐾

28 𝑝.𝑣𝑎𝑙𝑢𝑒𝑠 ← values from 𝑠𝑒𝑛𝑡 to 𝑠𝑒𝑛𝑑_𝑢𝑝_𝑡𝑜 in𝑉

29 𝑝.𝑛𝑒𝑥𝑡𝑘𝑒𝑦 ← 𝑠𝑒𝑛𝑑_𝑢𝑝_𝑡𝑜

30 𝑠𝑒𝑛𝑡 ← 𝑠𝑒𝑛𝑑_𝑢𝑝_𝑡𝑜

31 send 𝑝 to all workers

32 end

1 2 4 8 16 32 64 128 256
Block size

0

20

40

Ti
m

e
[m

s] Bitmap calculation
NCCL w/ GDR

Figure 20: Time cost comparison between bitmap calculation and
NCCL w/ GDR AllReduce on 100MB float tensor. The block size
refers to the number of floats in one block. The GPUwe use is V100.

B.1 Bitmap calculation
To determine non-zero blocks, we use GPU to calculate a bitmap

(one bit per block). This function runs whenever a part of the

gradient is ready for aggregation. Figure 20 shows that small (< 4)

block sizes degrade the bitmap calculation performance greatly.

We only use block sizes greater than 16 in OmniReduce as we find

that bitmap calculation overheads are negligible in this case. Our

OmniReduce implementation currently only supports AllReduce

for GPU data as we use the GPU to efficiently calculate the bitmap.

C PROOF OF CONVERGENCE
We first start with the definition of a 𝛿-compressor, then prove

that Block Random-k, and Block Top-k are 𝛿-compressors, and then

finally relate it to the convergence result for 𝛿-compressors.

Definition. (𝛿-compressor) [30] A probabilistic operator C :

R𝑑 → R𝑑 is called a 𝛿-approximate compressor for 𝛿 ∈ (0, 1] if

E∥𝑥 − C(𝑥)∥2
2
≤ (1 − 𝛿)∥𝑥 ∥2

2
∀𝑥 ∈ R𝑑 .

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio

Lemma. Let 𝑏 denote the total number of blocks. Both 𝑏𝑙𝑜𝑐𝑘-𝑟𝑎𝑛𝑑𝑘
(Block Random-k) and 𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 (Block Top-k) are 𝛿-compressors
with 𝛿 = 𝑘

𝑏
.

Proof. Let for any 𝑥 ∈ R𝑑 , 𝑥 [𝑖] ∈ R ⌈𝑑/𝑏 ⌉ denote the 𝑖𝑡ℎ block.
Then, 𝑥 = [𝑥 [1]⊤, 𝑥 [2]⊤, . . . , 𝑥 [𝑏]⊤]𝑇 . Also, let Ω𝑘 =

([𝑏]
𝑘

)
denote

the set of all 𝑘 element subsets of [𝑏].
Block Random-k: We have,

E∥𝑥 − 𝑏𝑙𝑜𝑐𝑘-𝑟𝑎𝑛𝑑𝑘 (𝑥)∥22 =
1

|Ω𝑘 |
∑
𝜔 ∈Ω𝑘

𝑏∑
𝑖=1

∥𝑥𝑖 ∥22 · I{𝑖 ∉ 𝜔}

=

𝑏∑
𝑖=1

∥𝑥𝑖 ∥22
∑
𝜔 ∈Ω𝑘

I{𝑖 ∉ 𝜔}
Ω𝑘

= (1 − 𝑘
𝑏
)∥𝑥 ∥2

2
,

which implies that 𝑏𝑙𝑜𝑐𝑘-𝑟𝑎𝑛𝑑𝑘 is a 𝛿-compressor with 𝛿 = 𝑘
𝑏
.

Block Top-k: Let 𝑆𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 (𝑥) denote the set of Top-𝑘 blocks cor-
responding to a given 𝑥 . Then,

∥𝑥 − 𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 (𝑥)∥22 = ∥𝑥 ∥
2

2
+ ∥𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 (𝑥)∥22

− 2⟨𝑥, 𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 (𝑥)⟩
= ∥𝑥 ∥2

2
− ∥𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 (𝑥)∥22

= ∥𝑥 ∥2
2
−

∑
𝑖∈𝑆𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 (𝑥)

∥𝑥 [𝑖] ∥2
2

≤ ∥𝑥 ∥2
2
− 𝑘
𝑏
∥𝑥 ∥2

2

= (1 − 𝑘
𝑏
)∥𝑥 ∥2

2
,

where the inequality follows from the fact∑
𝑖∈𝑆𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 (𝑥) ∥𝑥 [𝑖] ∥

2

2

𝑘
≥

∑𝑏
𝑖=1 ∥𝑥 [𝑖] ∥22

𝑏
.

The above implies that 𝑏𝑙𝑜𝑐𝑘-𝑡𝑜𝑝𝑘 is a 𝛿-compressor with 𝛿 = 𝑘
𝑏
.

Using the above lemma, Theorem 1 in [71] gives us the conver-

gence result for compressed distributed SGD with error-feedback

for an arbitrary 𝛿-compressor.

D LOSS RECOVERY PERFORMANCE
We show how different packet loss rates (between 0.01% and 1%)

affect DPDK-based OmniReduce. In our setup, we do not need to

handle packet loss in RDMA network as we use Reliable Connected

(RC) mode. Since no packet loss actually occurs in our experiments,

we emulate packet loss assuming uniform probability at a given

loss rate.

Figure 21 shows the difference between AllReduce time with

no loss minus AllReduce time with a given loss rate. We compare

against Gloo and NCCL while using TCP as transport protocol in

order to see a reaction to packet drops. The results show that Om-

niReduce’s packet retransmission is effective in every sparsity level

and loss rate. However, with a high loss rate (1%), the performance

of Gloo and NCCL-TCP drops sharply. We attribute this to TCP

congestion control.

0.01% 0.1% 1%
Loss rate

0

2

Di
ffe

re
nc

e
[m

s] OmniReduce (s=0%)
OmniReduce (s=90%)
OmniReduce (s=99%)

Gloo
NCCL-TCP

Figure 21: Performance drop of AllReduce time due to packet loss
and recovery. No packet loss is the baseline.

E ARTIFACT APPENDIX
Abstract
The main artifact accompanying this paper is the implementation

of OmniReduce, along with scripts and models to benchmark its

performance.

Scope
The artifact allows to validate the results of this paper with regard

to the performance of OmniReduce both with microbenchmarks

and in the end-to-end training setting.

Contents
• omnireduce: the code implementing the worker and aggre-

gator components of OmniReduce.

• docs: documentation, including instructions for reproducing

the experiments.

• benchmark: a benchmark to perform AllReduce on tensors

with different sparsity to test the performance of OmniRe-

duce and NCCL.

• models: the DNN models used in end-to-end training.

• notebooks: Jupyter notebooks to process and plot results.

Hosting
The artifact is available on GitHub at https://www.github.com/

sands-lab/omnireduce.

Requirements
Our experiments require 8 CPU servers used as aggregators and

8 GPU servers used as workers. Each GPU server requires one

GPU but can have more. Hardware support for DPDK, RDMA and

GDR is required to use those features. All machines should be

interconnected by a full-bisection network fabric.

https://www.github.com/sands-lab/omnireduce
https://www.github.com/sands-lab/omnireduce

	Abstract
	1 Introduction
	2 Background
	2.1 Related work

	3 OmniReduce Design
	3.1 Basic solution
	3.2 Block fusion
	3.3 Extension to sparse block format
	3.4 Performance analysis

	4 Block-based sparsification
	5 Implementation
	6 Evaluation
	6.1 Microbenchmarks
	6.2 End-to-end training
	6.3 Multi-GPU and multi-node scenario
	6.4 Sensitivity analysis

	7 Extensions
	8 Other related work
	9 Conclusion
	References
	A Packet loss recovery
	B Implementation details
	B.1 Bitmap calculation

	C Proof of convergence
	D Loss recovery performance
	E Artifact Appendix

