
	 56	 COMPUTER	 Published by the IEEE Computer Society	 0018-9162/14/$31.00 © 2014 IEEE

COVER FE ATURE

Practically speaking, most enterprises 
migrating to a software-defined network 
(SDN) must do so incrementally. Panopti-
con offers an approach for designing and 
operating an interim hybrid network that 
combines both traditional and SDN switch-
es by exposing a logical SDN abstraction. 

S oftware-defined networks (SDNs) hold consid-
erable promise for automating and radically 
simplifying computer network management—
a manual, error-prone task today. However, an 

immediate shift from existing network architectures to 
SDNs is unlikely on a broad scale because, despite some 
notable real-world deployments such as Google’s software-
defined WAN,1 for most organizations, software-defined 
networking remains a largely experimental technol-
ogy. Consequently, enterprises increasingly view hybrid 
networks—those that combine an SDN with traditional 
network devices—as a transitional step toward full SDN 
adoption. Yet despite their importance from a practical 
standpoint2 and the challenges they likely pose over the 

long term, research focusing on such hybrid environments 
has so far been modest. 

From the outset, transition to an SDN should meet 
several specific goals:

•• Provide clear—and immediate—benefits. Users will 
want to see an SDN’s advantages with the first de-
ployed switch. By contrast, Google’s software-defined 
WAN required years to fully deploy, and benefits were 
realized only after the network switching infrastruc-
ture was completely overhauled. Most enterprises 
would find such a situation unthinkable. The earlier 
its return on investment, the more appealing SDN 
adoption will be viewed, and the more readily it will 
be accepted.

•• Minimize disruption while establishing confidence. Even 
if existing switches already support SDN program-
mability, it is generally risky and undesirable for an 
enterprise to replace all production control proto-
cols with an SDN control plane as a single “flag day” 
event. Rather, to increase chances for successful adop-
tion, network operators must be able to deploy SDN 
technology incrementally, familiarizing users with its 
operation and building confidence in its reliability. 
This means starting with a small initial deployment 
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that can gradually widen as it encompasses more net-
work infrastructure and traffic.

•• Respect budgetary constraints. For budgetary reasons, 
it is generally necessary for any network reengineer-
ing to occur in stages, with operators upgrading parts 
of the network over time.

One approach for dealing with these challenges is to ab-
stract a hybrid network into a logical SDN—conceptually, 
a programmatic interface that exposes the network as if it 
were a full SDN deployment—providing a logically central-
ized control plane for the incrementally deployable SDN. 
Panopticon offers such a network architecture. 

PANOPTICON
Panopticon realizes a programming interface for a hybrid 
network by exposing a logical SDN abstraction. Specifi-
cally, as SDN switches are incorporated gradually into an 
existing network over time, Panopticon allows network 
operators to abstract away traditional network devices and 
operate the network as an SDN comprised of SDN-capable 
switches only. With careful planning, SDN capability can 
ultimately be extended to every network switchport. Al-
ternatively, because network-resource constraints may 
prevent the full SDN abstraction in practice, not every port 
needs to be controlled through the SDN interface.

Architecture
Panopticon’s architecture works on the principle that each 
network packet traversing an SDN switch can be treated 
according to end-to-end network policies, such as access 
control, defined via an SDN programming interface. More-
over, traffic that traverses two or more SDN switches can 
be controlled at finer levels of granularity to enable fur-
ther, customized forwarding (to facilitate load balancing, 
for example). Thus, Panopticon extends SDN capabilities 
to traditional switches by ensuring that all traffic to or 
from any operator-selected, SDN-controlled (SDNc) port 
is restricted to a “safe” end-to-end path—that is, a path 
traversing at least one SDN switch. We call this property 
waypoint enforcement.

Panopticon uses virtual LANs (VLANs) to restrict for-
warding on traditional network devices and guarantee 
waypoint enforcement because VLAN capabilities are ubiq-
uitously available on existing switches. However, because 
VLAN ID space is limited to 4,096 values (IEEE standard 
802.1Q) and hardware often supports even fewer, we 
devised a scalable waypoint enforcement mechanism, 
the solitary confinement tree. An SCT corresponds to a 
spanning tree and connects an SDNc port to certain SDN 
switches. As such, each SCT provides a safe path between 
an SDNc port and every SDN switch it connects to. 

A single VLAN ID is assigned to each SCT, ensuring traf-
fic isolation and providing per-destination path diversity. 

Scalability stems from the fact that VLAN IDs can be reused 
for “disjoint” SCTs—that is, SCTs that do not traverse a 
common traditional network device. Moreover, SCTs can 
be pre-computed and automatically installed onto tra-
ditional switches—for example, via the Simple Network 
Management Protocol. Re-computation is required, how-
ever, when the physical topology changes.

To illustrate, consider the eight-switch hybrid network 
shown in Figure 1a. Here, the orange links depict the SCT 
for SDNc port A, the gray links depict the SCT for SDNc port 
D, and the SCTs for the other ports are similarly color-coded. 
Figure 1b shows the corresponding logical SDN for the physi-
cal hybrid network that these SCTs enable. In this logical 
SDN, every SDNc port is connected to at least one SDN 
switch via a “pseudo-wire,” a connection realized by its SCT.

SDN implementation
Panopticon enables the active burden of network man-
agement to be gradually transitioned away from legacy 
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Figure 1. Panopticon overview. (a) In this sample 
eight-switch hybrid network, the green discs represent 
software-defined network (SDN) switches, and the blue 
discs represent traditional switches; overlaid are solitary 
confinement trees (SCTs) for the SDN-controlled (SDNc) 
ports A through F. Each SCT is realized by its own virtual 
LAN (VLAN) ID, represented via different colors. (b) In the 
corresponding logical SDN, the SDNc ports are virtually 
connected to SDN switches via “pseudo-wires,” indicated by 
broken lines.
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devices and onto the SDN control plane—a transition that 
can be realized at individual switchport granularity. While 
Panopticon does not strictly mandate how the SDN control 
plane interacts with the existing traditional control plane, 
we envision that each SDNc port will first implement the 
same high-level policies in effect prior to the transitioning 
process—for example, preserving the original IP subnet 
address allocation. Thus, all policies governing traffic that 
originates from or is directed to SDNc ports can be defined 
exclusively at the SDN switches rather than at a combina-
tion of SDN and traditional devices. This strategy should 
effectively limit added complexity in managing the net-
work during its transition to the SDN.

Still, both the SDN and traditional control planes must 
coexist during this transition. Consequently, within SCTs, 
Panopticon relies on standard Spanning Tree Protocol 
mechanisms, where necessary, to achieve loop freedom 
and tolerate link failures. 

In addition, SDNc ports must be reachable from outside 
the logical SDN. For simple scenarios in which addressing 
within the logical SDN maintains compatibility with the 
existing IP subnet allocation, the traditional routing control 
plane and logical SDN can remain oblivious to one another. 
More commonly, though, addressing within the logical 
SDN violates the IP subnet allocation. To provide reach-
ability in these instances, the SDN control plane could 
establish adjacencies with existing routing protocols, or 
routers could be configured with static routes for the IP 
subnets reachable through SDN switches. However, if at 
least one SDN switch is deployed in each IP subnet, it is 
possible to use a tunneling tprotocol such as Generic Rout-
ing Encapsulation to avoid interaction with the traditional 
existing routing control plane while ensuring reachability 
across IP subnets. Finally, to provide network applications 

with expected local network semantics, we rely on SDN 
capabilities to enable in-network proxies for Address Reso-
lution and Dynamic Host Configuration protocols.

OVERHEAD AND FEASIBILITY
Panopticon’s logical SDN abstraction does not come with-
out cost: waypoint enforcement through SDN switches can 
in some cases lead to increased path lengths and require 
greater link utilization. Consequently, Panopticon pres-
ents operators with some resource–performance tradeoffs, 
particularly in determining how the scope and means of 
partial SDN deployment will affect traffic generally. Still, 
the opportunities Panopticon offers for improving network 
traffic control—for example, by enabling multipath for-
warding for load balancing when sufficient path diversity 
exists—should not be discounted.

In navigating the deployment problem space, we have 
evaluated the approach’s feasibility as follows. We consider 
a deployment feasible if the SDN switches have sufficient 
forwarding state to support all traffic policies they must 
enforce, and VLAN requirements to realize SCTs are within 
required limits.

We simulated various partial SDN deployment scenarios 
based on different resource constraints and traffic condi-
tions by using a large campus network topology of roughly 
1,700 switches, as we discuss in greater detail elsewhere.3 
These simulations allowed us to evaluate the feasibility 
space of our architecture, explore the extent to which SDN 
control extends to the entire network, and understand the 
impact that partial SDN deployment has on link utilization 
and path stretch.

As Figure 2 illustrates, the ability to accommodate 
more SDNc ports with a small number of SDN switches 
depends largely on the number of VLAN IDs the traditional 
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Figure 2. Using the Panopticon approach, the number of SDNc ports accommodated as a percentage of the number of 
deployed SDN switches depends on how many VLAN IDs the existing system hardware supports.
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existing hardware supports for use. Under favorable 
conditions, with 1,024 VLANs, full SDNc port feasibility 
requires as few as 33 SDN switches. However, VLAN ID 
availability is necessary to construct SCTs: when tradi-
tional switches support at most 256 VLANs, more than 
140 SDN switches must be deployed before full SDNc port 
feasibility can be achieved.

To complement our simulation-based testing and fur-
ther investigate the consequences Panopticon has for 
traffic, we also conducted a series of emulation-based ex-
periments on portions of an actual enterprise network 
topology and further demonstrated the approach’s system-
level feasibility with a test-bed prototype.3

RECENT RELATED WORK
Our work contributes to a field that is attracting increasing 
attention from other researchers. Sugam Agarwal, 
Murali Kodialam, and T.V. Laksham, for example, have 
demonstrated effective engineering for traffic that 
crosses at least one SDN switch in a partial deployment.4 
Panopticon is an architecture that enforces this condition 
for all SDNc ports.

In a paper on software-controlled routing protocols 
presented at the 2014 Open Networking Summit, Laurent 
Vanbever and Stefano Vissicchio described mechanisms to 

enable an SDN controller to indirectly program L3 routers 
by carefully crafting routing messages.5 We view this work 
as complementary to ours in that it could be useful to in-
crease control over traffic whose paths include IP routers.

Ryan Hand and Eric Keller proposed an alternate ap-
proach to ours that they call ClosedFlow, which aims to 
enable SDN control over existing proprietary hardware by 
mimicking the fine-grained control available in OpenFlow.6

Finally, Vissicchio, Vanbever, and Olivier Bonaventure 
have discussed certain tradeoffs that arise within a di-
verse set of hybrid SDN models and argue that hybrid SDN 
architectures deserve more attention from the scientific 
community.7 We agree.

W e view Panopticon as a concrete step toward 
systematic, incremental deployment for SDNs. 
Accordingly, we have presented the approach at 

the Internet Research Task Force Working Group on SDN, 
and we plan to contribute our results to the ongoing dis-
cussions at the Open Networking Foundation’s Migration 
Working Group.

We hope that our work will offer a helpful reference 
point for practical hybrid software-defined networking and 
contribute to ongoing standardization efforts. 
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