
REFL: Resource-Efficient Federated Learning
Ahmed M. Abdelmoniem∗

Queen Mary University of London
ahmed.sayed@qmul.ac.uk

Atal Narayan Sahu
KAUST

Marco Canini
KAUST

Suhaib A. Fahmy
KAUST

Abstract
Federated Learning (FL) enables distributed training by learn-
ers using local data, thereby enhancing privacy and reducing
communication. However, it presents numerous challenges
relating to the heterogeneity of the data distribution, device
capabilities, and participant availability as deployments scale,
which can impact both model convergence and bias. Existing
FL schemes use random participant selection to improve the
fairness of the selection process; however, this can result in
inefficient use of resources and lower quality training. In this
work, we systematically address the question of resource ef-
ficiency in FL, showing the benefits of intelligent participant
selection, and incorporation of updates from straggling par-
ticipants. We demonstrate how these factors enable resource
efficiency while also improving trained model quality.

CCSConcepts: •Computingmethodologies→Machine
learning; Distributed algorithms.

ACM Reference Format:
AhmedM.Abdelmoniem, Atal Narayan Sahu,Marco Canini, and Suhaib
A. Fahmy. 2023. REFL: Resource-Efficient Federated Learning. In
Eighteenth European Conference on Computer Systems (EuroSys ’23),
May 8–12, 2023, Rome, Italy. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3552326.3567485

1 Introduction
Recently distributed machine learning (ML) deployments
have sought to push computation towards data sources in
an effort to enhance privacy and security [6, 27]. Training
models using this approach is known as Federated Learning

∗Corresponding author, also with Assiut University, Egypt. Work done
primarily while the author was with KAUST.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00
https://doi.org/10.1145/3552326.3567485

(FL). FL presents a variety of challenges due to the high het-
erogeneity of participating devices, ranging from powerful
edge clusters and smartphones to low-resource IoT devices
(e.g., surveillance cameras, sensors, etc.). These devices pro-
duce and store the application data used to train a shared ML
model. FL is deployed by large service providers such as Ap-
ple, Google, and Facebook to train computer vision (CV) and
natural language processing (NLP) models in applications
such as image classification, object detection, and recom-
mendation systems [15–17, 20, 59, 60, 68]. FL has also been
deployed to train models on distributed medical imaging
data [39], and smart camera images [25].
The life-cycle of FL training is as follows. First, the FL

operator builds the model architecture and determines hyper-
parameters with a standalone dataset. The model’s training
is then conducted on participating learners for a number of
centrally managed rounds until satisfactory model quality
is obtained. The main challenge in FL is the heterogeneity
in terms of computational capability and data distribution
among a large number of learners which can impact the
performance of training [6, 27].
Time-to-accuracy is a crucial performance metric and is

the focus of much work in this area [27, 32, 37, 64, 67]. It
depends on both the statistical efficiency and system effi-
ciency of training. The number of learners, minibatch size,
local steps affect the former. It is common for these factors
to be treated as hyper-parameters to be tuned for a partic-
ular FL job. System efficiency is primarily regulated by the
time to complete a training round, which depends on which
learners are selected and whether they become stragglers
whose updates do not complete in time. It is common to
configure a reporting deadline to cap the round duration, but
if only an insufficient number of learners complete within
this deadline, the entire round fails and is re-attempted from
scratch. Since a tight deadline can yield more failed rounds,
this can be mitigated by overcommitting the number of se-
lected learners in each round to increase the likelihood that
a sufficient number will finish by the deadline. Failed rounds
and overcommitted participants lead to wasted computation,
which has mostly been ignored in previous FL approaches. A
focus on time has also resulted in schemes that are not robust
to non-I.I.D. data distributions as they favor certain learner
profiles [36]. Finally, learners also have varying availabil-
ity for training [6, 27, 36, 67], which requires consideration
when dealing with data heterogeneity

https://doi.org/10.1145/3552326.3567485
https://doi.org/10.1145/3552326.3567485

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

All the above factors can lead to resource wastage—where
learners perform training work that does not contribute to
enhancing the model, whether due to updates that are ulti-
mately discarded, or poor data distribution. We argue that
this resource wastage deters users from participating in FL
and makes the scaling of FL systems to larger deployments
and more varied computational capabilities of learners prob-
lematic. We aim to optimize the design of FL systems for
their resource-to-accuracy in a heterogeneous setting. This
means the computational resources consumed to reach a
target accuracy is reduced without a significant impact on
time-to-accuracy. By considering heterogeneity at the heart
of our design, we also intend to demonstrate improved ro-
bustness to realistic data distributions among learners.
Existing efforts aim to improve convergence speed (i.e.,

boosting model quality in fewer rounds) [37, 61] or system
efficiency (i.e., reducing round duration) [42, 43], or selecting
learners with high statistical and system utility [32]. These
approaches ignore the importance of maximizing the uti-
lization of available resources while reducing the amount
of wasted work. To address these problems, we introduce
resource-efficient federated learning (REFL), a practical scheme
that maximizes FL systems’ resource efficiency without com-
promising the statistical and system efficiency. REFL accom-
plishes this by decoupling the collection of participant up-
dates from aggregation into an updated model. REFL also
intelligently selects among available participants that are
least likely to be available in the future. To the best of our
knowledge, this is the first approach to directly account for
predicted availability as the basis for participant selection in
FL and to demonstrate its importance in the overall process.
REFL can be integrated as a plug-in module to existing FL
systems [6, 31, 32, 37] and is compatible with existing FL
privacy-preservation techniques [7, 8].

In summary, we make the following contributions:
1. We highlight the importance of resource usage of the

learners’ limited capability and availability in FL and
present REFL to intelligently select participants and
efficiently make use of their resources.

2. We propose staleness-aware aggregation and intelli-
gent participant selection algorithms to improve re-
source usagewithminimal impact on time-to-accuracy.

3. We implement and evaluate REFL using real-world
FL benchmarks and compare it with state-of-the-art
solutions to show the benefits it brings to FL systems.

This work does not raise any ethical issues. REFL is re-
leased as open source at https://github.com/ahmedcs/REFL.

2 Background
We review the FL ecosystem with a focus on system design
considerations, highlighting major challenges based on em-
pirical evidence from real datasets. We motivate our work
by highlighting the main drawbacks of existing designs.

Le
ar

ne
rs

Round i

Selection

C
he

ck
-in

R
ep

or
tin

gTask

Training

Aggregation

Reporting deadline

Round i + 1

Late
reporting

FL
server

Not chosen

Training
Training

Figure 1. A round of training in the reference FL setting. A
sample of learners, called participants, perform training in a
given round. Only the updates received within the reporting
deadline are aggregated and used to update the model prior
to the next round.

2.1 Federated Learning
We consider the popular FL setting introduced in federated
averaging (FedAvg) [6, 43]. The FedAvg model consists of a
(logically) centralized server and distributed learners, such
as smartphones or IoT devices. Learners locally maintain
private data and collaboratively train a joint global model. A
key assumption in FL is a lack of trust, implying training data
should not leave the data source [7], and any possible breach
of private data during communication should be avoided [8].
The training of the global model is conducted over a se-

ries of rounds. As shown in Fig. 1, at the beginning of each
training round, the server waits (during a selection window)
for a sufficient number of available learners to check-in.1
Then, the server samples a subset of the checked-in learners
– called participants – to train in the current round. The par-
ticipants fetch the latest version of the model along with any
necessary configurations (e.g., hyper-parameter settings).
Each participant trains the model on its local data for a

specified number of epochs and produces a model update
(i.e., the delta from the global model) which it sends to the
server. The server waits until a target number of participants
send their updates to aggregate them and update the global
model. This concludes the current round and the former
steps are repeated in each round until a certain objective is
met (e.g., target model quality or training budget).
To ensure progress, the server generally waits for model

updates until a reporting deadline. Updates from stragglers
that may arrive beyond the deadline are discarded. A round
is considered successful if at least a target number of partici-
pants’ updates are received by the deadline, else the round
is aborted and a new one is attempted.

The FL setting is also distinct from conventional ML train-
ing because the distributed learners may exhibit the follow-
ing types of heterogeneity: 1) data heterogeneity: learners
generally possess variable data points in number, type, and
1A learner is available if it meets certain participation conditions: typically,
being connected to power, being idle, and using an unmetered network [6].

https://github.com/ahmedcs/REFL

REFL: Resource-Efficient Federated Learning EuroSys ’23, May 8–12, 2023, Rome, Italy

distribution; 2) device heterogeneity: learner devices have
different speeds owing to different hardware and network
capabilities; 3) behavioral heterogeneity: the availability
of learners varies across rounds and there may be learners
that abandon the current round if they become unavailable.
Heterogeneity creates several challenges for FL system

designers because both the quality of the trained model and
the training speed are majorly affected by which participants
are selected at each round. Below we briefly review exist-
ing designs that serve as context to motivate our distinct
approach (§3). We discuss additional related work in §8.

2.2 Existing FL Systems
Accounting for the unreliability of learners, SAFA [64] en-
ables semi-asynchronous updates from straggler participants.

SAFA flips the participant selection process of FedAvg: it
runs training on all learners and ends a round when a pre-
set percentage of them return their updates. SAFA allows
participants to report after the round deadline, in which
case the updates are cached and applied in a later round.
However, SAFA only tolerates updates from learners that
are within a bounded staleness threshold. Therefore, the
round duration in SAFA is reduced by only waiting for a
fraction of the participants, while the cache ensures that the
computational effort of straggling participants is not entirely
wasted and is able to boost statistical efficiency. FLeet [13]
enables stale updates but adopts a dampening factor to give
smaller weight as staleness increases. This is beneficial for
not discarding updates that exceed the staleness threshold.
However, their AdaSGD protocol is not directly compatible
with the traditional FL settings such as FedAvg and FLeet
synchronizes model gradients after every local mini-batch.
Oort [32] uses a participant selection algorithm that fa-

vors learners with higher utility. The utility of a learner in
Oort is comprised of statistical and system utility. The statis-
tical utility is measured using training loss as a proxy while
system utility is measured as a function of completion time.
Oort preferentially selects fast learners to reduce the round
duration. At the same time, it uses a pacer algorithm that
can trade longer round duration to include unexplored (or
slow) learners when required for statistical efficiency.

3 The Case for Resource-Efficient FL
We motivate REFL by highlighting the trade-offs between
system efficiency and resource diversity as conflicting opti-
mization goals in FL. Navigating the extremes of these two
objectives, as exhibited by the SOTA FL systems, we show
how they fall short on common FL benchmarks.

3.1 System Efficiency vs. Resource Diversity
Current FL designs either aim at reducing the time-to-accuracy
(i.e., system efficiency) [32] or increasing coverage of the pool
of learners to enhance the data distributions and fairly spread

the training workload (i.e., resource diversity) [37, 64, 65],
but do not consider the cost of wasted work by learners.
The first goal results in a discriminatory approach towards
certain categories of learners, either preferentially selecting
computationally fast learners or learners with model updates
of high quality (i.e., those with high statistical utility) [32, 37].
The second goal entails spreading out the computations ide-
ally over all available learners but at the cost of potentially
longer round duration [64, 65] and significant wasted work.
These two conflicting goals present a challenging trade-

off for designers of FL systems to navigate. On one side of
the extreme, Oort aggressively optimizes system efficiency
and ignores the diversity of learners’ data in order to im-
prove time-to-accuracy. The implication of this extreme is
less robustness to high levels of data heterogeneity due to
poor selection fairness, potentially producing a global model
that does not cover the majority of learners’ data. On the
other hand, SAFA foregoes pre-training selection, selecting
all available learners to maximize resource diversity, at the
cost of significantly increased resource wastage.
To strike a balance between the two extremes, the FL

system should achieve a sufficient level of resource diversity
without sacrificing significantly in terms of system efficiency.
Our goal is to synthesize the opportunities presented by
existing systems and devise a new holistic approach that
can fulfill the resource diversity and system efficiency goals
simultaneously while considering cumulative resource usage
as a primary metric.2 We first show that the existing systems
fail to achieve both of these goals and result in significant
wastage of resources. We also highlight the opportunities
they present which we embrace in our design of REFL.

3.2 Stale Updates & Resource Wastage
Taking inspiration from asynchronous methods [19, 65],
SAFA allows straggling participants to contribute to the
global model via stale updates. We first evaluate SAFA’s re-
source usage (i.e., the time cumulatively spent by learners in
training), and resource wastage (i.e., the time cumulatively
spent by learners producing updates that are not incorpo-
rated into the model). We compare the performance of SAFA
as described in [64] against a version (called SAFA+O) that
assumes a perfect oracle that knows which stale updates
are eventually aggregated (i.e., will not exceed the staleness
threshold). We set the staleness threshold to 5 rounds and the
target participant percentage to 10%. We use an audio dataset
of spoken words provided by Google, hereafter referred to
as the Google Speech benchmark [63], and use FedScale’s
data-to-learner mappings [31] (c.f. Table 1 and Section 5 for

2As a concrete metric, we use the time units of resource usage (i.e., for
compute resources, the time spent to perform on-device training and for
communication resources, the time to communicate with the server) ac-
cumulated at every participant. This metric is proportional to energy con-
sumption but affords us avoiding fine-grained power measurements, which
are difficult to accurately account for in simulation at scale.

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

FedAvg_10 FedAvg_100 SAFA SAFA+O

101 102 103

Cumulative resource usage (hours) - log
10

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

1.4H8.6H 1.7H1.7H

Figure 2. Resource usage comparison of SAFA versus an
ideal resource-optimized version denoted as SAFA+O, and
FedAvg with 10 or 100 participants. We train the model up
to a target accuracy. The run time of each approach is shown
as a colored annotation near the final data point.

details). We set the total number of learners to 1,000, and the
round deadline to 100s. We use a real-world user behavior
trace to induce learner’s availability dynamics [67].

Fig. 2 shows the resource usage (x-axis) and resulting test
accuracy (y-axis); the lines are annotated with the time to
achieve the final accuracy (this style is repeated in other
figures in this paper). Since the round time is bounded by
a deadline, both SAFA and SAFA+O have equal run times.
Notably, SAFA is inefficient in terms of resource usage, con-
suming nearly 5× the resources of SAFA+O to achieve the
same final accuracy. By selecting all available learners, then
eventually discarding a large number of the computed up-
dates, SAFA wastes around 80% of learners’ computation
time. The plot also includes runs of FedAvg with Random
selection of 10 and 100 participants. Despite having low
resource wastage, FedAvg with 10 participants incurs sig-
nificantly higher run time (5×) to reach the same accuracy
of SAFA; the resource usage could be traded for lower run
time with 100 participants, to achieve the same accuracy at
similar resource usage to SAFA+O. We note that uniform
random data mapping yields similar results.
Opportunity. In principle, allowing stale updates enables
a reduction in round duration and achieves better time-to-
accuracy while preserving stragglers’ contribution. Themain
challenge is, however, to balance the number of participants
to avoid significant resource wastage. This is difficult because
the system must estimate the on-device training time and
reason about the probability of learners dropping out or
exceeding the staleness threshold. This suggests that beyond
stale updates, we must also tackle resource diversity directly.

3.3 Participant Selection & Resource Diversity
Many existing FL systems select participants using a uniform
random sampler [6, 9, 68]. As noted in Oort [32], this simple

0 250 500 750 1000
Cumulative resource usage (hours)

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

100H122H

Oort Random
0

20

40

60

80

100

Un
iq

ue
 P

ar
tic

ip
an

ts
 (%

)

(a) FedScale data mapping

0 250 500 750 1000
Cumulative resource usage (hours)

10

15

20

25

30

Te
st

 A
cc

ur
ac

y
(%

)

97H

122H

Oort Random
0

20

40

60

80

100

Un
iq

ue
 P

ar
tic

ip
an

ts
 (%

)

(b) Label-limited (non-IID)

Figure 3. Impact of data heterogeneity on test accuracy in
two data mappings. The right y-axes and dotted lines indi-
cate the percentage of unique participants during training.

strategy is prone to select learners with disparate computing
capabilities and prolong round duration due to stragglers.
On the other hand, Oort’s approach of selecting fast learners
has unfavorable consequences, by biasing the model to a
subset of the learners that can reduce data diversity.
To see this in practice, we compare the Oort participant

selector with a random sampler (Random).We use the Google
Speech benchmark for 1,000 training rounds and compare
two cases with different data mappings. In the first case, data
points are mapped to the learners using FedScale’s client-
to-data mappings [31].3 In the second case, data points are
also uniformly distributed among the participants but each
participant is constrained to have ≈10% of all labels (non-
IID). To emphasize the effect of the sampling strategy, we set
all learners to be always available; we investigate the effects
of availability dynamics later.

Fig. 3 shows the resulting test accuracy against resource us-
age. In the FedScale’s data mapping scenario, Oort is clearly
superior to random selection as Oort significantly reduces
the round duration by exploiting fast learners. Conversely, in
the non-IID case (label-limited mapping), random selection
achieves higher accuracy with a tolerable increase in run
time due to a higher resource (and data) diversity.
Participant availability impacts the global data distribu-

tion represented in the global model [21]. Our analysis of a
large-scale device behavior trace from [67] involving more
than 136K users of an FL application over a week reveals that
70% of the learners are available for at most 10 minutes while
50% are available for at most 5 minutes. This means in prac-
tice FL rounds should typically last a few minutes to obtain
updates from the majority of participants. The analysis also
suggests that low availability learners may require special
consideration to increase the number of unique participants
without adversely impacting overall training time.

We now repeat similar experiments on the FedScale and
non-IID cases of the Google Speech benchmark and contrast
the execution of Oort and Randomparticipant selectionmeth-
ods in two conditions: 1) all learners are available (AllAvail);

3In Section 5, we show that FedScale’s client-to-data mapping is comparable
to that of an Independent and Identically Distributed (IID) data.

REFL: Resource-Efficient Federated Learning EuroSys ’23, May 8–12, 2023, Rome, Italy

Oort+All Oort+Dyn Random+All Random+Dyn

0 200 400 600 800 1000
Cumulative resource usage (hours)

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

100H 122H
110H 129H

(a) FedScale data mapping

0 250 500 750 1000
Cumulative resource usage (hours)

10

15

20

25

30

Te
st

 A
cc

ur
ac

y
(%

)

97H

122H

103H
132H

(b) Label-limited (non-IID)

Figure 4. Impact of availability on test accuracy in two data
mappings.

2) learners’ availability is dynamic based on the trace of de-
vice behavior (DynAvail). Fig. 4 shows that learner availabil-
ity has no tangible impact in the FedScale case since learners
hold data points with comparable distributions. However,
in the non-IID case, learners’ availability has a significant
effect on model accuracy (we observe a 10-point drop).
Opportunity. To achieve better model generalization per-
formance, the model should be trained jointly on data sam-
ples from a large fraction of the learner population. While
Oort’s insights into informed participant selection result in
faster round duration, there needs to be more consideration
with regard to the dynamic availability of learners to ensure
wider learner coverage. This suggests that beyond learners’
diversity and compute capabilities, we need to effectively
prioritize learners whose availability is limited.

4 REFL Design
REFL’s objective is to enhance the resource efficiency of
the FL training process by maximizing resource diversity
without sacrificing system efficiency. REFL achieves this by
reducing resource wastage from delayed participants and
prioritizing those with reduced availability. It leverages a
theoretically-backed method to incorporate stale updates
based on their quality which helps improve the training per-
formance. It proposes a scaling rule for aggregation weights
to mitigate stale updates’ impact.

The two core components of REFL are:
1. Intelligent Participant Selection (IPS): to priori-

tize participants that improve resource diversity.
2. Staleness-AwareAggregation (SAA): to improve re-

source efficiency without impacting time-to-accuracy.
Overview by example. To illustrate the main differences,
Fig. 5 contrasts REFL with Oort. First, REFL enables learn-
ers’ tracking of the availability patterns which help with
predicting the future availability. Therefore REFL is able to
prioritize the least available participants (i.e., ■ and ■ in
Fig. 5) to maximize training coverage of different learners’
data distributions. REFL also allows straggling participants to
submit late results beyond the set round duration (i.e.,■ and
■ in Fig. 5). Unlike Oort, which discards these updates due
to their inferior device capabilities, this approach reduces

Time

(a) Learner availability

Le
ar

ne
rs

R1 R2 R3 R4

Stale update

(c) REFL – Sampled learners: 9

Stale
update

R1 R2 R3 R4
(b) Oort – Sampled learners: 7

Round time

Set of learners
(since start)

Figure 5. Example trace of 4 training rounds illustrating
the main differences between Oort (b) and REFL (c). The dy-
namic availability of 9 color-coded learners is shown in (a).
By optimizing for time-to-accuracy, Oort skews participant
selection towards faster learners during the early phases
of training, thereby missing limited-availability learners (■
and■). Oort’s round time is determined by stragglers. By al-
lowing stale updates, REFL lowers the dependency on strag-
glers. By prioritizing learners based on estimated availabil-
ity, REFL samples a more diverse set of learners.

the wasted work of stragglers who might own valuable data
for the model to be trained on.

4.1 Intelligent Participant Selection (IPS)
IPS increases resource diversity to allow the global model
to capture a wide distribution of learners’ data. Moreover, it
provides an optional component to further reduce resource
wastage by intelligently adapting the number of participants
in every round.
Least available prioritization: Algorithm 1 describes how
the IPS component intelligently selects participants from
the large pool of available learners. Each learner periodi-
cally trains a model that predicts its future availability.Upon
check-in of the learner 𝑙 , the server sends the running av-
erage estimate of round duration 𝜇𝑡 . The learner uses the

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

Algorithm 1: Priority Selection Algorithm
Input :𝑁𝑡 -Target number of participants
Output :𝑆-List of selected participants
Initialize 𝑆𝑡 = ∅, 𝑃𝑡 = ∅, 𝑎 = (𝜇𝑡 , 2𝜇𝑡);
on event Learner_Check_In:

Send slot 𝑎 to learner 𝑙 ;
Receive learner 𝑙 ’s availability probability 𝑝𝑙 ;
𝑃𝑡 = 𝑃𝑡 ∪ 𝑝𝑙 ;

on event End_Selection_Window:
Sort in ascending order 𝑃𝑡 ;
Randomly shuffle 𝑃𝑡 for probabilities with ties;
Return 𝑆𝑡 as the top 𝑁𝑡 learners in 𝑃𝑡 ;

prediction model to determine the probability of its availabil-
ity in the time slot [𝜇𝑡 , 2𝜇𝑡] and reports this to the server. At
the end of the selection window, the server sorts, in ascend-
ing order, the learners’ probabilities 𝑃 and randomly shuffles
tied learners. Then, the server selects the top 𝑁𝑡 learners to
participate in this round (i.e., the least available learners).
Similar to Google’s FL system [6], the participants hold from
checking-in with the server for few rounds (e.g., 5 rounds)
after submitting the updates.
Availability predictionmodel: Apredictionmodel should
be simple with low overhead and trained locally on the learn-
ers’ devices to preserve privacy. In this work, we do not
propose new availability models and use off-the-shelf time-
series models to predict the future availability of the learners.
Linear models such as Auto-Regressive Integrated Moving
Average (ARIMA) or Smoothed ARIMA can be trained on
a minimal set of features collected from on-device events
of change in the state such as idle, charging, connection
to WIFI, screen locked, etc [22, 23].4 We use the Prophet
forecasting tool [58], which is based on the aforementioned
linear models. We train a prediction model on the Stunner
dataset, which is a large-scale dataset comprising device
events from a large number of mobile users (e.g., the charg-
ing state of the devices) [57]. Given a time window in the
future, the model produces a probability for the charging
state (eq. availability) of the device within the queried time
window.5 In §5, we show that the trained model can provide
availability predictions with high accuracy.
Adaptive Participant Target (APT): IPS can optimize re-
source usage by adapting the pre-set target number of par-
ticipants 𝑁0 selected by the operator. First, the server up-
dates its moving average estimate of round duration 𝜇𝑡 =

(1 − 𝛼)𝐷𝑡−1 + 𝛼𝜇𝑡−1, where 𝐷𝑡−1 is the duration of the pre-
vious round 𝑡 − 1. Then, before commencing round 𝑡 , the

4Several works used mobile traces to learn user patterns [56, 57, 66].
5To address any privacy concerns, the server query is on a limited time
window in the future and the server has no access to the history of the de-
vice’s state. Moreover, the learner may choose not to share this information
in which case the server assumes that it is available in the queried time
window.

server probes each current straggler 𝑠 ∈ 𝐿𝑠 (from round 𝑡 −1)
for an estimate of its expected remaining time to upload the
update 𝑅𝑇𝑠 . Next, the server computes how many stragglers
(𝐵𝑡) can complete within the duration of the current round
(i.e., 𝑅𝑇𝑠 ≤ 𝜇𝑡). And so, the target number of participants is
adjusted for round 𝑡 to 𝑁𝑡 =𝑚𝑎𝑥 (1, 𝑁0 − 𝐵𝑡). This ensures
that, in each round, a roughly constant number of updates
𝑁0 is aggregated (i.e., the total fresh and stale updates). In
large-scale scenarios, this could potentially further improve
resource consumption. Note, irrespective of clients’ avail-
ability, APT is an add-on scheme to not over-commit the
participants, further reducing resource consumption.

4.2 Staleness-Aware Aggregation (SAA)
This component enables the participants to submit their
updates past the round deadline and processes these stale
updates along-with the fresh updates. Stale updates can be
noisy since the model can drift significantly by the time a
stale update arrives. In order to mitigate this impact, we
multiply the stale updates based on a boosting factor (§4.2.3).

We also provide a convergence analysis to substantiate the
benefits of staleness. We analyze this effect independently
of other REFL components because all the REFL components
complement each other. Since FedAvg [6, 43] is one of the
most prominent FL algorithms, we analyze (§4.2.2) FedAvg
with staleness (termed Stale Synchronous FedAvg, c.f. Al-
gorithm 2). Under standard assumptions, our convergence
analysis shows that the error due to staleness is small in each
round, and hence the gradient does not differ significantly
(see Lemma 3). Due to this small error per round, we show
in Theorem 1 that Stale Synchronous FedAvg converges at
the same asymptotic rate as FedAvg.

4.2.1 Convergence Analysis. We theoretically demon-
strate that FedAvg with stale updates can converge and ob-
tain the convergence rate. Consider the following federated
optimization problem consisting of a total of𝑚 devices:

min𝑥 ∈R𝑑 𝑓 (𝑥) ..= 1
𝑚

∑
𝑗 ∈[𝑚] 𝑓𝑗 (𝑥), (1)

where 𝑓𝑖 (𝑥) = E𝑧𝑖∼D𝑙 (𝑥 ; 𝑧𝑖) such that 𝑙 (𝑥 ; 𝑧𝑖) denotes the
loss function evaluated on input 𝑧𝑖 sampled from D.

Algorithm 2 gives the pseudo-code of Stale Synchronous
FedAvg to solve (1). Here,𝑔𝑖

𝑡,𝑘
denotes the stochastic gradient

computed at the 𝑖𝑡ℎ participant at round 𝑡 , and at local itera-
tion 𝑘 , such that 𝑔𝑖

𝑡,𝑘
= ∇𝑓 (𝑦𝑖

𝑡,𝑘
) + 𝜉𝑖

𝑡,𝑘
with E[𝜉𝑖

𝑡,𝑘
|𝑥𝑖
𝑡,𝑘
] = 0.

The staleness ofmodel updates is modeled as a round delay.
For ease of exposition, we consider a fixed 𝜏 round delay in
Algorithm 2. However, our analysis holds for variable delays
bounded by 𝜏 .
Assumptions: we consider the following general assump-
tions on the loss function.

Assumption 1. (Smoothness) The function, 𝑓𝑖 : R𝑑 → R at
each participant, 𝑖 ∈ [𝑛] is 𝐿-smooth, i.e., for every 𝑥,𝑦 ∈ R𝑑
we have, 𝑓𝑖 (𝑦) ≤ 𝑓𝑖 (𝑥) + ⟨∇𝑓𝑖 (𝑥), 𝑦 − 𝑥⟩ + 𝐿

2 ∥𝑦 − 𝑥 ∥
2.

REFL: Resource-Efficient Federated Learning EuroSys ’23, May 8–12, 2023, Rome, Italy

Algorithm 2: Stale Synchronous FedAvg
Input :𝐾-synchronization interval, 𝜏-delay in rounds,

𝑁𝑡 -number of participants
Initialize 𝑥0 = 𝑥1 = . . . = 𝑥𝜏−1 ∈ R𝑑 ;
for round 𝑡 = 0, . . . ,𝑇 − 1 do

The server samples 𝑆𝑡 learners with |𝑆𝑡 | = 𝑁𝑡 ;
for participant 𝑖 ∈ [𝑛] in parallel do
𝑦𝑖𝑡,0 = 𝑥𝑡 ;
for iteration 𝑘 = 0, . . . , 𝐾 − 1 do

Compute a stochastic gradient 𝑔𝑖
𝑡,𝑘
;

𝑦𝑖
𝑡,𝑘+1 = 𝑦

𝑖
𝑡,𝑘

− 𝛾𝑔𝑖
𝑡,𝑘

; // Local participant update

Let Δ𝑖𝑡 = 𝑦𝑖𝑡,𝐾 − 𝑦𝑖𝑡,0 = −𝛾 ∑𝐾−1
𝑘=0 𝑔

𝑖
𝑡,𝑘
;

Send Δ𝑖𝑡 to the server;
At Server:
if 𝑡 < 𝜏 then

Broadcast 𝑥𝑡+1 to participants ; // Aggregation

starts 𝑡 = 𝜏

else
Receive Δ𝑖𝑡−𝜏 , 𝑖 ∈ 𝑆 ; // Update arrives with delay 𝜏

Let Δ𝑡−𝜏 = 1
|𝑆 |

∑
𝑖∈𝑆 Δ

𝑖
𝑡−𝜏 ;

Server update: 𝑥𝑡+1 = 𝑥𝑡 + 𝛾Δ𝑡−𝜏 ;
Broadcast 𝑥𝑡+1 to participants;

Assumption 2. (Global minimum) There exists 𝑥★ such
that, 𝑓 (𝑥★) = 𝑓 ★ ≤ 𝑓 (𝑥), for all 𝑥 ∈ R𝑑 .

Assumption 3. ((𝑀,𝜎2) bounded noise) [54] For every sto-
chastic noise 𝜉𝑖

𝑡,𝑘
, there exist𝑀 ≥ 0, 𝜎2 > 0, such thatE[∥𝜉𝑖

𝑡,𝑘
∥2 |

𝑥𝑡] ≤ 𝑀 ∥∇𝑓 (𝑥𝑖
𝑡,𝑘
)∥2 + 𝜎2, for all 𝑥𝑡 ∈ R𝑑 .

4.2.2 Convergence Result. The next theorem provides
the non-convex convergence rate.

Theorem 1. Let Assumptions 1, 2, and 3 hold. Then, for Al-
gorithm 2, we have

1
𝑛𝑇𝐾

𝑇−1∑
𝑡=0

𝑛∑
𝑖=1

𝐾−1∑
𝑘=0
E∥∇𝑓 (𝑦𝑖

𝑡,𝑘
)∥2 =

O
(
𝜎
√
𝐿 (𝑓 (𝑥0−𝑓 ★))√

𝑛𝑇𝐾
+ max{𝐿

√
𝜏𝐾 (𝑛𝜏𝐾+𝑀),𝐿 (𝐾+𝑀/𝑛) }

𝑇𝐾

)
.

Overview of analysis. Our analysis builds on top of the
Error Feedback framework [54], which is in turn inspired by
Perturbed Iterate Analysis [41]. We first define the update
of Stale Synchronous FedAvg:

𝑣𝑡 =

{
0, if 𝑡 < 𝜏
1
𝑛

∑𝑛
𝑖=1

∑𝐾−1
𝑘=0 𝑔

𝑖
𝑡−𝜏,𝑘 , otherwise.

(2)

Using this definition of 𝑣𝑡 , we have

𝑥𝑡+1 = 𝑥𝑡 − 𝑣𝑡 ∀𝑡 . (3)

Let us also define the error 𝑒𝑡 due to asynchrony as

𝑒𝑡 =

𝜏∑
𝑗=1
⊮(𝑡−𝑗) ≥0

(
𝛾

𝑛

𝑛∑
𝑖=1

𝐾∑
𝑘=1

𝑔𝑖
𝑡−𝑗,𝑘

)
. (4)

where ⊮𝑍 denotes the indicator function of the set 𝑍 .
The recurrence relation in the next lemma is instrumental

for perturbed iterate analysis of Algorithm 2.

Lemma 1. Define the sequence of iterates {𝑥𝑡 }𝑡 ≥0 as 𝑥𝑡 =

𝑥𝑡 − 𝑒𝑡 , with 𝑥0 = 𝑥0. Then {𝑥𝑡 }𝑡 ≥0 satisfy the recurrence:
𝑥𝑡+1 = 𝑥𝑡 − 𝛾

𝑛

∑𝑛
𝑖=1

∑𝐾−1
𝑘=0 𝑔

𝑖
𝑡,𝑘
.

Lemmas 2 and 3 are useful for bounding intermediate
terms.

Lemma 2. We have

E𝑡 ∥
1
𝑛

𝑛∑
𝑖=1

𝐾−1∑
𝑘=0

𝑔𝑖
𝑡,𝑘
∥2 ≤ 1

𝑛

𝑛∑
𝑖=1

𝐾−1∑
𝑘=0

(𝐾 + 𝑀
𝑛
)∥∇𝑓 (𝑦𝑖

𝑡,𝑘
)∥2 + 𝐾𝜎

2

𝑛
,

where E𝑡 [·] denotes expectation conditioned on the iterate 𝑥𝑡 ,
that is, E[·|𝑥𝑡].

Lemma 3. With a constant step-size 𝛾 ≤ 1
2𝐿
√
𝜏𝐾 (𝑛𝜏𝐾+𝑀)

, we

have

𝑇−1∑
𝑡=0

1
𝑛

𝑛∑
𝑖=1

𝐾−1∑
𝑘=0
E∥𝑥𝑡 − 𝑦𝑖𝑡,𝑘 ∥

2

≤ 1
4𝐿2

∑𝑇−1
𝑡=0

1
𝑛

∑𝑛
𝑖=1

∑𝐾−1
𝑘=0 E∥∇𝑓 (𝑦𝑖𝑡,𝑘)∥

2 + 𝛾2

𝑛
𝑇𝜏𝐾2𝜎2.

Lemma 4. Let Assumptions 1, 2 and 3 hold. If {𝑥𝑡 }𝑡 ≥0 denote
the iterates of Algorithm 2 for a constant step-size,
𝛾 ≤ min{ 1

2𝐿
√
𝜏𝐾 (𝑛𝜏𝐾+𝑀)

, 𝑛
2𝐿 (𝑛𝐾+𝑀) }, then

1
𝑛𝑇𝐾

𝑇−1∑
𝑡=0

𝑛∑
𝑖=1

𝐾−1∑
𝑘=0
E∥∇𝑓 (𝑦𝑖

𝑡,𝑘
)∥2 ≤

8
𝛾𝑇𝐾

(
𝑓 (𝑥0) − 𝑓 ★

)
+ 4𝛾𝐿𝜎2

𝑛
+ 4𝛾2𝐿2𝜏𝐾𝜎2

𝑛
.

The above leads us to the stated theorem for an appropriate
choice of parameters.
Significance of results. We achieve aO(1√

𝑛𝑇𝐾
) asymptotic

rate, which improves with 𝐾 , the number of local steps per
round. In comparison, the Asynchronous algorithm of [65]
does not improve with the number of local steps. Moreover,
asynchrony (captured by 𝜏) only affects the faster decaying
O(1

𝑇
) term. Thus, Stale Synchronous FedAvg has the same

asymptotic convergence rate as synchronous FedAvg [54],
and hence achieves asynchrony for free. Furthermore, this
asymptotic rate is better for Stale Synchronous FedAvg in
practice, since the rate improves with 𝑛, the total number of
learners contributing to an update, and staleness relaxation
should result in more learners contributing to an update.

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

4.2.3 Mitigating the Impact of Increased Staleness. We
note that our convergence guarantee in §4.2.1 depends on
the maximum round delay 𝜏 , and large round delays could
negatively impact convergence, which must be mitigated. To
mitigate the impact, prior work on distributed asynchronous
training proposes to scale the weight of stale updates before
aggregation [13, 24, 69]. We denote the set of fresh and stale
updates in a round as F , and S respectively. Let 𝑛F be the
number of fresh updates, and 𝑢F be the average of the fresh
updates. Moreover, let 𝑛S be the number of stale updates,
and for a straggler 𝑠 ∈ S,𝑢𝑠 be the stale update, and 𝜏𝑠 be the
number of rounds the straggler is delayed by. The following
are the scaling rules in the literature:

1. Equal: same weight as fresh updates (i.e.,𝑤𝑠 = 1);
2. DynSGD: linear inverse of the number of staleness

rounds𝑤𝑠 = 1
𝜏𝑠+1 [24];

3. AdaSGD: exponential damping of the number of stal-
eness rounds𝑤𝑠 = 𝑒−(𝜏𝑠+1) [13].

AdaSGD also proposed a boosting multiplier to increase
the weights for stale updates to account for learners with
data distributions that more significantly deviate from the
global data distribution. AdaSGD showed that boosting the
weight of important stale updates is critical since stragglers
may possess more valuable (dissimilar) data compared to
fast learners. However, this approach may violate privacy
because computing the boosting factor requires learners to
share information about their data.

Therefore, we propose a privacy-preserving boosting fac-
tor and combine it with the staleness-based damping rule of
DynSGD [24]. The proposed boosting factor favors a stale
update based on how much it deviates from the fresh up-
dates’ average and hence it does not require any information

about learner’s data. Let,Λ𝑠 =
∥�̂�F−

𝑢𝑠+𝑛F�̂�𝑓
𝑛F+1 ∥2

∥�̂�F ∥2 be the deviation
of the stale update 𝑢𝑠 from the average of the fresh updates
𝑢F . Let Λ𝑚𝑎𝑥 = max𝑠∈S Λ𝑠 . The boosting factor term scales
a stale update 𝑠 proportional to 1 − 𝑒−

Λ𝑠
Λ𝑚𝑎𝑥 . Finally, our rule

to compute the scaling factor is:

𝑤𝑠 = (1 − 𝛽) 1
𝜏𝑠+1 + 𝛽 (1 − 𝑒−

Λ𝑠
Λ𝑚𝑎𝑥) (5)

where 𝛽 is a tunable weight for the averaging.
For every fresh update 𝑓 ∈ F , we choose a scale value of

one, i.e.,𝑤 𝑓 = 1. The final coefficients for weighted averaging
are the normalized weights. That is, for an update 𝑖 ∈ F ∪S,
the final coefficient as:

�̂�𝑖 =
𝑤𝑖∑

𝑖∈F∪S𝑤𝑖

Hence, in aggregation, 𝑤𝑖 < 𝑤 𝑓 meaning that weights ap-
plied to stale updates are strictly less than weights for new
updates. This in principle reduces the impact from malicious
learners who delay the updates to gain any advantage be-
cause of the boosting factor. Further analysis in adversarial
settings is left to future work.

5 Evaluation
Our evaluation addresses the following questions:

• Is prioritizing learners based on availability beneficial?
• Does aggregation of stale updates reduce resource us-
age and improve model quality?

• Should stale updates be weighted differently to fresh
updates?

• Is REFL scalable and future-proof?
We summarize the main observations as follows:

• REFL achieves better model quality with up to 2× less
resources compared to existing systems.

• REFL results in quality gains in different scenarios
involving both IID and non-IID scenarios.

• REFL’s weight scaling boosts the statistical efficiency.
• REFL scales well and is more robust in future scenarios.

5.1 Experimental Setup
Our experiments simulate FL benchmarks consisting of learn-
ers using real-world device configurations and availability
traces. Our experiments capture different scenarios, models,
datasets and data distributions as detailed next. We use a
cluster of NVIDIA GPUs to interleave the training of the
emulated learners. The participants train in parallel on time-
multiplexed GPUs using PyTorch v1.8.0.
Implementation: We implement REFLwithin FedScale [31],
a framework for emulation and evaluation of FL systems.
The SAA and IPS components are implemented as Python
modules and integrated into FedScale’s server aggregation
logic and participant selection procedures, respectively. We
defer to §7 a discussion on deployment considerations and
integration with popular FL frameworks.
Emulation environment: Our results are gathered via
emulation in FedScale. This framework comprises three key
components:
1) The Aggregator selects participants, assigns the task, and
handles the aggregation of updates. It employs a Client Man-
ager to track learners’ availability and selects the target num-
ber of participants in each round. It also employs an Event
Monitor which processes system events and invokes the
appropriate event handler.
2) The Executor runs the learners’ logic, loads the corre-
sponding federated dataset, and trains the model using the
PyTorch backend. The latency is determined for computation
by # of samples × latency per sample, and for communica-
tion by size in bytes / bandwidth. This allows for having a
simulated run time using realistic traces.
3) The Resource Manager manages the available computa-
tional resources (e.g., GPUs). It employs a queue for the
learners waiting for training on the computing resource and
assigns a learner to the first available computing resource.6

6The queue does not affect the simulated time which is maintained by the
event monitor which advances a global virtual clock based on the events
and their correct time order.

REFL: Resource-Efficient Federated Learning EuroSys ’23, May 8–12, 2023, Rome, Italy

Table 1. Summary of benchmarks and characteristics of the mappings used in this work.

Task Model Dataset Model Size
of Parameters

Learning
Rate

Local
Epochs

Batch
Size

of
Labels

FedScale Mapping Label-limited Mapping

of
samples

Total
Learners

of
samples

Total
Learners

of
Labels

Image
Classification

ResNet18 [18] CIFAR10 [29] 11.4M 0.01 1 10 10 N/A N/A 50K 3K 4
ShuffleNet [70] OpenImage [30] 2.23M 0.01 5 30 600 1.3M 14K 1.3M 3K 60

Speech
Recognition ResNet34 [18] Google Speech [63] 21.5M 0.005 1 20 35 200K 3K 200K 3K 4

Natural Language
Processing Albert [33] Reddit [49] 11M 0.0001 5 40 N/A 42M 16M 8.4M 3K N/A

Stackoverflow [43] 11M 0.0008 5 40 N/A 43M 300K 8.6M 3K N/A

ye
s

tw
o

ho
us

e
w

ow tr
ee

th
re

e
do

g
st

op
do

w
n up go

ni
ne

ei
gh

t
be

d on le
ft of
f

sh
ei

la
fiv

e
si

x
ha

pp
y

se
ve

n
fo

rw
ar

d no bi
rd ca

t
rig

ht
le

ar
n

on
e

fo
ur

ze
ro

m
ar

vi
n

fo
llo

w
ba

ck
w

ar
d

vi
su

al

Tags (Labels)

0

20

40

60

80

100

N
or

m
al

iz
ed

 #
 o

f c
lie

nt
s

(%
)

repeats
1
2
3
4
5
6
7
8
9
10

Figure 6. Number of label repetitions across learners.

Benchmarks: We experiment with the benchmarks listed
in Table 1, that span several common FL tasks of different
scales to cover varied practical scenarios. The datasets con-
sist of hundreds or up to millions of data samples, we refer
the reader to [31, 32] for the description of the datasets. As
in [32], by default, FedAvg [43] is used as the aggregation
algorithm for CIFAR10, and YoGi [50] for other benchmarks.
Data partitioning: To account for realistic heterogeneous
data mappings, we partition the labeled training dataset
among the learners using different methods, from easy to
hard. As commonly done in the literature, the baseline case
is a random uniform mapping (IID). Second, we adopt the
FedScale data-to-learner mappings [31], which encompass
thousands to millions of learners whose data distribution
reflects real data sources.7 However, upon analyzing the fre-
quency of label appearances across learners in the FedScale
data mapping for the Google speech benchmark (c.f. Fig. 6),
we observe that most labels appear at least once on more
than 40% of the learners, making this close to a uniform dis-
tribution, and thus simplifying training. Similar observations
are made for CV benchmarks.

To consider other realistic heterogeneous data mappings,
we introduce label-limited mappings where learners are
assigned data samples drawn from a random subset of labels
as listed in Table 1, with data samples per learner following

7For instance, images collected from Flickr in OpenImage have an Author-
ProfileUrl attribute that can be used to map data learners, though these may
not reflect real data mappings in FL scenarios.

102 103

Inference Time (ms)

0.2

0.4

0.6

0.8

1.0

CD
F

CPU Float
CPU Quantized

(a) CDF of inference time

0 1 2 3 4 5
Cluster Number

102

103

In
fe

re
nc

e
tim

e
(m

s)

(b) Clustering of devices

0 50 100 150
Time in hours

4000

6000

8000

10000

12000

#
 o

f o
nl

in
e

de
vi

ce
s

(c) Available learners over time

0 100 200 300 400 500
Availability Duration (mins)

0.25

0.50

0.75

1.00

CD
F

(d) CDF of availability period

Figure 7. Computational [(a),(b)] and availability [(c),(d)]
characteristics of learners’ profiles used in experiments.

particular distributions as follows. L1) Balanced distribu-
tion: using an equal number of samples for each data label
on each learner; L2) Uniform distribution: using uniform
random assignment of data points to labels on each learner;
L3) Zipf distribution: Zipfian distribution with 𝛼 = 1.95 to
have higher level of label skew (popularity).
System performance of learners: Learners’ hardware
performance is assigned at random from profiles of real
device measurements from the AI [5] and MobiPerf [40]
benchmarks for inference time and network speeds of mo-
bile devices, respectively. AI Benchmark catalogs inference
times for popular DNN models (e.g., MobileNet) on a wide
range of Android devices (e.g., Samsung Galaxy S20 and
Huawei P40). The profiles include devices with at least 2GB
RAM using WiFi, which matches the common case in FL
settings [6, 32, 68].

We show how the distribution of floating-point and quan-
tized inference times from the AI benchmark and device
profiles can be clustered into 6 different device configura-
tions demonstrating significant device heterogeneity with
a long tail distribution, as shown in Fig. 7a. Fig. 7b shows
that learners could be grouped into 6 clusters of different
device configurations according to their computational capa-
bilities, demonstrating that learners can have highly variable
completion time during training.

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

Oort Priority REFL Random

0 200 400 600 800 1000
Cumulative resource usage (hours)

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

119H110H
122H

129H

(a) FedScale’s data mapping

0 200 400 600 800 1000
Cumulative resource usage (hours)

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

115H

104H
113H 132H

(b) Label-limited (balanced)

0 200 400 600 800 1000
Cumulative resource usage (hours)

20

30

40

Te
st

 A
cc

ur
ac

y
(%

)

113H

103H

114H
132H

(c) Label-limited (uniform)

0 200 400 600 800 1000
Cumulative resource usage (hours)

15

20

25

30
Te

st
 A

cc
ur

ac
y

(%
)

114H

104H

114H

132H

(d) Label-limited (Zipfian)

0 200 400 600 800 1000
Cumulative resource usage (hours)

0

20

40

60

80

100

%
 o

f U
ni

qu
e

Le
ar

ne
rs

(e) Percent. of unique learners

0 200 400 600 800 1000
Cumulative resource usage (hours)

10

12

To
ta

l U
pd

at
es

s

(f) # of aggregated updates

Figure 8. Training performance comparison under
OC+DynAvail across different data mappings.

Availability dynamics of learners: We use a trace of
136K mobile users from different countries over a period
of 1-week [67]. The trace contains ≈180 million entries for
events such as connecting to WiFi, charging the battery,
and (un)locking the screen. Availability is defined as when a
device is plugged to a charger and connected to the network,
similar to [32, 60].

We see that learners exhibit variations (and cyclic behav-
ior) and most learners stay available for only a few minutes.
We extract availability dynamics from the user behavior
trace in [67]. Fig. 7c shows that the number of available
learners over time varies significantly and they exhibit a di-
urnal pattern over the days of the week where large numbers
of learners are mostly available (i.e., charging) during the
night. Fig. 7d shows a CDF of the length of learners’ avail-
ability slots which exhibits a very long tail. Most clients (up
to 70%) are available for less than 10 minutes.
Hyper-parameter settings: The FL and learning hyper-
parameters were the default values set by the FedScale frame-
work and no further tuningwas done. The common FL hyper-
parameters were the same for all methods in the comparison.
We used the recommended parameter settings for the evalu-
ated methods (i.e., Oort [32] and SAFA [64]).
REFL parameters: Unless otherwise stated, no maximum
threshold is applied to staleness when incorporating updates.
We set 𝛼 = 0.25 for the moving average of round duration
which is chosen to give more weight to the most recent
round duration values. We set 𝛽 = 0.35 for the weight of

Table 2. Baseline performance with centralized training.

Benchmark Quality Metric Aggregation
Algorithm

Data to Learner Mapping

Uni. Rand. Label-limited

Uni. Rand. Zipf Dist. Balanced

CIFAR10 Top-5 Test Acc FedAvg 90.4 86.1 76.4 86.4

Open Image Top-5 Test Acc YoGi 70.7 30.6 32.3 35.5

Google Speech Top-5 Test Acc. YoGi 76.5 34.7 33.4 37.1

Reddit Test Perp. YoGi 43.6 N/A N/A N/A

Stackoverflow Test Perp. YoGi 40.2 N/A N/A N/A

stale updates in Eq. (5) to favour dampening over scaling the
stale updates. We tested, within our experimental capacity,
different values and found the aforementioned valuesworked
well. We leave a detailed sensitivity analysis and ablation
study of hyper-parameters to future work.
Availability prediction model: In the experiments, we
assume the model has 90% accuracy for future availability
(i.e., 1 out of 10 selections is a false positive), which matches
the model accuracy obtained from training a simple linear
model on real-world trace as detailed in Section 5.2.
Experimental scenarios: We consider two experimental
settings used in the literature:

1. OC: the FL server over-commits the target number of
participants 𝑁𝑡 by 30% and waits for the updates from
𝑁𝑡 participants (as in [31, 32]);

2. DL: the FL server chooses a target number of par-
ticipants 𝑁𝑡 and aggregates any number of updates
received before the end of a pre-set reporting deadline
(as in [6, 67]).

Unless otherwise mentioned, the target number of partici-
pants is 10; each experiment is repeated 3 times with different
sampling seeds and the average of the three runs is shown.
The experiments use ≈13K hours of GPU time.

5.2 Experimental Results
We evaluate the amount of learner resources (and run time)
spent to achieve a certain test accuracy (lower resources and
lower run time are better). Since our results are based on
emulation, we quantify resource usage using the time ac-
cumulated at every learner as a proxy. In particular, the
cumulative resources for each round are computed as the
cumulative sum of computation and communication time
for all participants in the round.

Here, we focus on Google Speech and present the results
of other benchmarks and experimental settings in §5.2.8. Ta-
ble 2 show the baseline accuracy of the benchmarks in a
semi-centralized training setting (i.e., data-parallel) where
the dataset is uniformly divided among 10 learners that par-
ticipate in every training round.

5.2.1 Performance of selection algorithms. Weuse the
experimental settingOC+DynAvail. We compare REFLwith
Oort, Random, and Priority selection. Priority is the IPS com-
ponent of REFL (i.e., SAA component is disabled).

REFL: Resource-Efficient Federated Learning EuroSys ’23, May 8–12, 2023, Rome, Italy

0 1000 2000 3000 4000 5000
Cumulative resource usage (hours)

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)

646H

788H

Oort REFL

(a) Balanced

0 1000 2000 3000 4000 5000
Cumulative resource usage (hours)

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

666H

795H

Oort REFL

(b) Uniform

0 1000 2000 3000 4000 5000
Cumulative resource usage (hours)

15

20

25

30

35

Te
st

 A
cc

ur
ac

y
(%

)

661H

790H

Oort REFL

(c) Zipfian

Figure 9. Training convergence comparison under OC+DynAvail across the different Label-limited (non-iid) data mappings.

0 500 1000 1500
Cumulative resource usage (hours)

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

5H 3H

REFL SAFA

(a) Uniform mapping (iid)

0 2000 4000 6000
Cumulative resource usage (hours)

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

12H 10H

REFL SAFA

(b) Label-limited (uniform)

Figure 10. Comparison against SAFA.

Oort REFL REFL+APT Random

0 1000 2000 3000 4000
Cumulative resource usage (hours)

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

15H

28H

28H28H

(a) AllAvail

0 1000 2000 3000 4000
Cumulative resource usage (hours)

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

) 15H

28H

28H

28H

(b) DynAvail

Figure 11. Training performance ofREFLwith Adaptive Par-
ticipant Target using 50 participants in OC and different
availability.

Oort REFL Random

0 250 500 750 1000
Cumulative resource usage (hours)

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

122H100H
122H

(a) FedScale data mapping

0 250 500 750 1000
Cumulative resource usage (hours)

20

30

40

Te
st

 A
cc

ur
ac

y
(%

)

122H

97H
122H

(b) Label-limited (uniform)

Figure 12. Performance comparison of REFL vs Oort vs Ran-
dom in the OC+AllAvail experimental setting.

Fig. 8 shows that, over the FedScale and different non-IID
(label-limited) data mappings, with minimal resource usage,
REFL achieves better accuracy over other methods (i.e., Oort,
Random, and Priority). REFL achieves superior performance
thanks to the availability-based prioritization (Fig. 8e) and
aggregation of stale updates (Fig. 8f). When the FL training
process is run for more rounds in the label-limited non-IID

case, Fig. 9 shows that REFL converges to significantly higher
accuracy than Oort, in less time and with lower resource
usage.

5.2.2 Performance of aggregation algorithms. Com-
paring SAFA and REFL, we use the DL+DynAvail setting
with a total learner population of 1,000 and a round deadline
of 100s. We use FedAvg as the underlying aggregation algo-
rithm. REFL pre-selects 100 participants and the target ratio
is set to 10% and 80% for SAFA and REFL, respectively. For
both schemes, we set the staleness threshold to 5 rounds.
The results in Fig. 10 show that run times of SAFA and

REFL are comparable, but SAFA consumes significantly more
resources. In the case of the FedScale mapping (Fig. 10a),
the results show that REFL achieves higher accuracy with
≈20% fewer resources than SAFA. In the non-IID mapping
(Fig. 10b), REFL significantly improves the accuracy by 10
points using ≈60% fewer resources compared to SAFA.

5.2.3 Availability-based prioritization. The results in
Fig. 8 show that Priority selection achieves better model ac-
curacy thanks to prioritizing the least available learners. The
results suggest that, especially in non-IID settings, selecting
participants with low availability results in a better rate of
unique learners with valuable (likely new) data samples, and
hence the resource usage to achieve a certain accuracy is
also reduced.

5.2.4 Adaptive target. We run experiments in the OC
setting with both DynAvail and AllAvail scenarios using
the label-limited (uniform) mapping and 50 participants per
round.

Fig. 11 shows that, in both scenarios, REFL and REFL +APT
have higher model quality with lower resource usage com-
pared to Oort and Random. Moreover, the resource consump-
tion of REFL can be further reduced with APT by trading off
extra run time (i.e., 15H vs. 28H).8 Compared toAllAvail, the
improvements are maintained in DynAvail when REFL pri-
oritizes the least available clients and comparable accuracy is
achieved. However, depending on the benchmark, APT may

8REFL achieves higher accuracy compared to REFL+APT (i.e., 48% vs. 42%)
within 15 hours run time but REFL uses approximately 55% more resources
on average within this time.

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

AdaSGD DynSGD Equal REFL

0 200 400 600 800 1000
Training Rounds

20

40

60

Te
st

 A
cc

ur
ac

y

(a) Uniform random
(IID)

0 200 400 600 800 1000
Training Rounds

20

40

60

Te
st

 A
cc

ur
ac

y
(b) FedScale mapping

0 200 400 600 800 1000
Training Rounds

20

30

40

Te
st

 A
cc

ur
ac

y

(c) Label-limited
(uniform)

0 200 400 600 800 1000
Training Rounds

15

20

25

30

35

Te
st

 A
cc

ur
ac

y

(d) Label-limited
(Zipfian)

0 200 400 600 800 1000
Training Rounds

20

30

40

50

Te
st

 A
cc

ur
ac

y

(e) Label-limited
(balanced)

Figure 13. Performance of various scaling rules for stale update weighting in the aggregation step.

0 200 400 600
Cumulative resource usage (hours)

43

44

45

46

Te
st

 P
er

pl
ex

ity

56H

72H

Oort REFL

(a) Reddit

0 200 400 600
Cumulative resource usage (hours)

40

42

Te
st

 P
er

pl
ex

ity

62H

70H

Oort REFL

(b) StackOverFlow

0 100 200 300 400
Cumulative resource usage (hours)

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

44H 44H

Oort REFL

(c) OpenImage

0 100 200 300 400 500
Cumulative resource usage (hours)

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

72H 56H

Oort REFL

(d) CIFAR-10

Figure 14. Performance for NLP and CNN benchmarks in
OC+DynAvail. We use the Label-limited mapping for Stack-
overflow and Reddit, FedScale datamapping for OpenImage
and Uniform IID mapping for CIFAR10.

yield no benefits when the target number of participants is
small (e.g., 𝑁0 ≤ 10).

5.2.5 Stale aggregation. We experiment with REFL, Oort,
and Random in the OC+AllAvail setting.

Fig. 12 shows the achieved test accuracy vs training rounds.
We observe that, over different data mappings, REFL achieves
good model quality with lower resource usage thanks to the
SAA component. Notably, the benefits are more profound for
non-IID distributions. In non-IID settings, the stale updates
of delayed participants are more important compared to IID
settings. This demonstrates that stale updates can boost the
statistical efficiency of training. Also, REFL achieves run time
similar to Random because learners have their availability
probability set to 1 (always available), and so REFL reverts
to random selection.

5.2.6 Stale weight scaling. We use OC+DynAvail and
set the deadline to 100 seconds. We evaluate the weight
scaling rules of §4.2.3 and present test accuracy results over
the training rounds in Fig. 13.
We observe that the REFL’s scaling rule consistently out-

performs the other scaling rules in all data distribution sce-
narios. In the IID cases (Figs. 13a and 13b), the differences

among the scaling rules are small. However, in the non-IID
cases (Figs. 13c to 13e), the performance is inconsistent ex-
cept for REFL’s rule. These results show the benefits of REFL’s
rule for mitigating the potential negative impact of stale up-
dates. The same observations are made for OC+AllAvail
with FedAvg.

5.2.7 Availability prediction model. We evaluate the
forecasting model. The model is trained on the Stunner
trace [57], which contains device events from large num-
ber of worldwide mobile users. We used devices with at least
1,000 samples (i.e., 137 devices) in the trace collected during
September 2018. We extracted the plugged-in and charging
state to train a model for each device using the first half
of each devices’ samples. We compared the devices’ model
predictions on the remaining samples, which are thus used
as the testing dataset.

The results show that the models predict future availabil-
ity states with high accuracy. The values of the coefficient of
determination, mean square error and mean absolute error,
averaged across devices, are 0.93, 0.01, and 0.028, respec-
tively.

5.2.8 Results of other benchmarks. We run NLP (Red-
dit and StackOverFlow) and CV (CIFAR10 and OpenImage)
benchmarks in the OC+DynAvail setting. We use YoGi as
the aggregation algorithm for the Open Image, Reddit and
StackOverFlow benchmarks and FedAvg for the CIFAR10
benchmark. Adaptive Participant Target (APT) is enabled for
REFL. We also limit NLP dataset sizes to 20% (i.e., ≈ 8 million
samples) as indicated in Table 1.

The results in Fig. 14 directly compare REFL and Oort. The
results for Reddit (Fig. 14a) and StackOverFlow (Fig. 14b)
demonstrate that REFL achieves considerable reduction in
both learners’ resource consumption and the final test per-
plexity compared to Oort. We note that during the initial
rounds, the performance is comparable between REFL and
Oort. Then, Oort’s low diversity results in divergence which
may be attributed to the lack of new samples (or participants
with new data which help improve the model convergence).
Similarly, the results for OpenImage (Fig. 14c) and CIFAR10
(Fig. 14d) show that REFL achieves the same model accuracy

REFL: Resource-Efficient Federated Learning EuroSys ’23, May 8–12, 2023, Rome, Italy

0 500 1000 1500 2000 2500
Cumulative resource usage (hours)

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)

7H 2H

REFL SAFA

(a) Uniform mapping
(IID)

0 1000 2000 3000 4000
Cumulative resource usage (hours)

15

20

25

30

35

Te
st

 A
cc

ur
ac

y
(%

)

7H
3H

REFL SAFA

(b) Label-limited
(uniform)

Figure 15. Resource efficiency in large-scale FL settings.

with lower resource consumption compared to Oort in sce-
narios when the data distribution among the learners is IID
or FedScale’s data mapping (i.e., closer to IID).

6 Discussion
We discuss the implications of REFL in future scenarios.
Large-scale federated learning: We project that future
FL deployments will scale significantly to include learner
devices such as sensors, IoT devices, autonomous vehicles,
etc., that may not be connected to power sources and have
limited computational capabilities. REFL enables efficient
scaling over a larger number of resources, in contrast to FL
systems that perform post-training selection (e.g., SAFA) or
skew participant selection to fast devices (e.g., Oort). Invok-
ing all devices for training would overwhelm the server and
impose significant energy usage by learners, much of which
would be wasted.

We show the impact of large populations on resource us-
age using the Google speech benchmark and 3× the number
of learners (3,000). As shown in Fig. 15, we observe that SAFA
wastes many resources in the IID (Fig. 15a) and even more
in the non-IID (Fig. 15b) setting.
Future hardware advancements: We project that compu-
tational capability of devices will continue to improve and so
FL systems should benefit from this. Therefore, schemes such
as Oort that favor faster learners are likely to see increased
under-representation of low-capability learners, resulting
in models that do not generalize well over a large popula-
tion. In contrast, REFL copes with hardware advancements
by benefiting from faster learners without overlooking low-
capability learners.

We run the Google Speech benchmark in 4 settings using:
current device configurations (HS1); device configurations
with completion times (i.e., computation and communica-
tion) doubled for the top 𝑋 percentile of devices (where 𝑋 is
25% (HS2), 75% (HS3), and 100% (HS4)). As shown in Figs. 16a
and 16b, we observe both Oort and REFL benefit from hard-
ware enhancements in IID settings. However, as shown in
Fig. 16c, with realistic label-limited non-IID settings, REFL
sees significant performance benefits due to the aggregation
of stale updates and higher participant diversity. Oort does
not benefit from improved speeds because the selection still

HS1 HS2 HS3 HS4

0 200 400 600 800 1000
Cumulative resource usage (hours)

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

107H
105H

85H51H

(a) Oort - Uniform (IID)

0 200 400 600 800 1000
Cumulative resource usage (hours)

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

116H
115H

85H58H

(b) REFL- Uniform (IID)

0 200 400 600 800 1000
Cumulative resource usage (hours)

10

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

104H100H79H50H

(c) Oort - Label-limited uniform

0 200 400 600 800 1000
Cumulative resource usage (hours)

10

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

) 113H113H92H59H

(d) REFL- Label-limited uniform

Figure 16. Impact of future hardware advancements.

favors the faster learners, which reduces training time but
not model quality.
Implications of the availability predictionmodel: When
new learners join the FL process, they may not have traces
with which to train their availability prediction model, re-
sulting in low confidence in their predictions. Moreover,
malicious or adversarial laerners may attempt to influence
the system by consistently reporting low future availability.
To deal with these scenarios, and as recommended by [6],
we use in Section 4.1 a filtering mechanism that prevents
a participant to be reselected in the following 𝑋 rounds (in
our experiments 5 rounds).

7 Integration with FL Frameworks
The design of REFL is lightweight and can operate as an on-
line service or a plug-in module for existing FL frameworks.
Therefore, REFL suits large-scale FL deployments dealing
with likely thousands to millions of end-devices.

REFL selects participants as follows: 1) First, the server
updates its estimate of round duration 𝜇𝑡 and send an esti-
mate of the time period 𝑎 = (𝜇𝑡 , 2𝜇𝑡) of the next round to the
learners; 2) learners maintain a local trace of their charging
events and periodically train the forecasting model, which
produces a probabilistic value for their charging state during
future time periods. 3) upon receiving an availability query
𝑎, each the learner 𝑙 uses the prediction model to produce its
availability probability 𝑝𝑙 (𝑎) during time period 𝑎 and sends
𝑝𝑙 (𝑎) to the server; 4) the server collects the probabilities 𝑃𝑡
and selects the participants using Algorithm Algorithm 1;
and 5) the server sends each of the selected participants a
random hash ID which encodes a time-stamp of the current
round as well as the FL task (e.g., the model) and relevant
parameter configuration.

REFL handles stale updates as follows: i) The server
collects the updates which are received before the end of

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

current training round 𝑡 . If the time-stamp of a received
update’s hash ID does not match the the current round, it
is categorized as a stale update; ii) at the end of the round
during aggregation, the server aggregates the fresh updates
first to produce 𝑢F . iii) for each stale update, 𝑢𝑠 , the server
computes the level of staleness 𝜏𝑡 using the timestamp of the
stale update𝑢F ; iv) for each stale update, the server computes
the deviation of the stale update from the fresh updates Λ𝑡
and uses the proposed rule in Eq. (5) to assign the scaling
weight𝑤𝑠 to the stale update; and v) the server aggregates
the scaled stale updates with the aggregated fresh updates
to produce the new model using Algorithm 2.
To integrate REFL with PySyft, minimal exchanges be-

tween the server and learners are needed at the selection
stage. The server sends an estimate time-slot of the next
training round. The learners use the forecasting model and
send their availability probability. Therefore, the learners do
not need to exchange any sensitive information about their
data. The FL developer programs the client-side to train the
forecasting model and respond to the availability query from
the server which poses minimal memory and communication
overhead. REFL can also run as a distributed service using
a communication library (e.g., XML-RPC [14]) to establish
the communication channel between the REFL process and
the server. The server can share metadata from the partici-
pants with the REFL service. The server can use the PySyft
API model.send(participant_id) to invoke the participants
selected by REFL, and model.get(participant_id) to collect
the model and metadata updates from the participant.

8 Related Work
Federated learning: FL is commonly viewed as a ML par-
adigm wherein a server distributes the training process on a
set of decentralized participants that train a shared global
model using local data that is never communicatedwith other
entities [27, 43]. FL has been used to enhance prediction qual-
ity for virtual keyboards among other applications [6, 68]. A
number of FL frameworks have facilitated research in this
area [9, 31, 48, 53, 60, 67]. Flash [67] extended Leaf [9] to
incorporate heterogeneity-related parameters. FedScale [31]
enables FL experimentation using a diverse set of challenging
and realistic benchmark datasets; we use it as the emulation
framework in this work.
Participant selection strategies: In each round, the FL
server samples among online learners and trains the global
model on the selected participants (e.g., 10s of learners)
among those currently online (e.g., 1,000s of learners). A
number of recent works have proposed enhanced participant
selection strategies. Biasing the selection process towards
learners with fast hardware and network speeds has been
proposed [47]. Other work has sought to enhance statistical
efficiency by selecting participants with better model up-
dates [10, 12, 52]. Recently, Oort [32] proposed a strategy

that combines both system and statistical efficiency. As we
demonstrate in this work, these approaches either result in
wasted computation or low coverage of the learners.
Heterogeneity in FL: A significant challenge facing wider
adoption of FL systems at scale is uncertainties in system be-
havior due to learner, system, and data heterogeneity. Learn-
ers’ computational capacity can restrict contributions and
extend round duration [3, 36, 37, 67]. Architectural and al-
gorithmic solutions to tackle heterogeneity have been pro-
posed [2, 32, 34, 37, 62]. Heterogeneity in FL is particularly
challenging because participants have varying data distri-
butions and availability, as well as heterogeneous system
configurations that cannot be controlled [3, 6, 27, 68].
FL proposals: Broader improvements in FL systems have
included reducing communication costs [6, 11, 28, 51, 55],
improving privacy guarantees [4, 6, 42, 44, 46], compensating
for partial work [37, 62], minimizing energy consumption on
edge devices [35], and personalizing global models trained
by participants [26]. Recent works have sought to address
the challenge of data heterogeneity [37, 38, 45].
Our work complements these efforts aiming to optimize

the FL ecosystem. We aim to produce a resource-efficient
FL framework making better use of learners’ resources to
achieve target model quality without stretching training time.
REFL’s design can easily benefit from the existing techniques
for secure aggregation or differential privacy.

9 Conclusion
We studied two key issues preventing the wider adoption
of FL systems: resource wastage and low data diversity. We
proposed REFL that addresses these issues through two core
components that encompass novel selection and aggregation
algorithms. Compared to existing systems, REFL is shown,
both theoretically and empirically, to improve model quality
while reducing resource usage with low impact on training
time. REFL is a vital step towards establishing a novel and
practical ecosystem for resource-efficient federated learning.

Acknowledgments
We thank our shepherd, Somali Chaterji, and the anonymous
reviewers for their feedback. We also thank the Artifact Eval-
uation Committee for their efforts. This publication is based
upon work supported by the King Abdullah University of
Science and Technology (KAUST) Office of Research Ad-
ministration (ORA) under Award No. ORA-CRG2021-4699.
For computer time, this research used the resources of the
Supercomputing Laboratory at KAUST.

References
[1] AhmedM. Abdelmoniem. 2022. This Paper’s Artifacts Repository. https:

//doi.org/10.5281/zenodo.7141105
[2] Ahmed M. Abdelmoniem and Marco Canini. 2021. Towards Mitigat-

ing Device Heterogeneity in Federated Learning via Adaptive Model
Quantization. In EuroMLSys.

https://doi.org/10.5281/zenodo.7141105
https://doi.org/10.5281/zenodo.7141105

REFL: Resource-Efficient Federated Learning EuroSys ’23, May 8–12, 2023, Rome, Italy

[3] Ahmed M. Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and
Marco Canini. 2022. Empirical Analysis of Federated Learning in
Heterogeneous Environments. In EuroMLSys.

[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. 2020. How To Backdoor Federated Learning. In
AISTATS.

[5] AI Benchmark. 2021. Performance Ranking. https://ai-benchmark.
com/ranking.html

[6] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Ste-
fano Mazzocchi, Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. 2019. Towards Feder-
ated Learning at Scale: System Design. In MLSys.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving
Machine Learning. In CCS.

[8] Keith Bonawitz, Fariborz Salehi, Jakub Konečný, Brendan McMa-
han, and Marco Gruteser. 2019. Federated Learning with Autotuned
Communication-Efficient Secure Aggregation. In 53rd Asilomar Con-
ference on Signals, Systems, and Computers.

[9] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub
Konečný, H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar.
2019. LEAF: A Benchmark for Federated Settings. In Workshop on
Federated Learning for Data Privacy and Confidentiality.

[10] Wenlin Chen, Samuel Horváth, and Peter Richtárik. 2020. Optimal
Client Sampling for Federated Learning. arXiv:2010.13723 [cs.LG]

[11] Yang Chen, Xiaoyan Sun, and Yaochu Jin. 2020. Communication-
Efficient Federated Deep Learning With Layerwise Asynchronous
Model Update and Temporally Weighted Aggregation. IEEE Transac-
tions on Neural Networks and Learning Systems 31, 10 (2020).

[12] Yae Jee Cho, JianyuWang, and Gauri Joshi. 2022. Towards Understand-
ing Biased Client Selection in Federated Learning. In AISTATS.

[13] Georgios Damaskinos, Rachid Guerraoui, Anne-Marie Kermarrec, Vlad
Nitu, Rhicheek Patra, and Francois Taiani. 2020. FLeet: Online Feder-
ated Learning via Staleness Awareness and Performance Prediction.
In Middleware.

[14] Python Docs. 2020. XMLRPC server and client modules. https:
//docs.python.org/3/library/xmlrpc.html

[15] FaceBook. 2021. Opacus: High-speed library for applying differential
privacy for Pytorch. https://github.com/pytorch/opacus

[16] FedAI. 2021. Federated AI Technology Enabler. https://www.fedai.org
[17] Florian Hartmann, Sunah Suh, Arkadiusz Komarzewski, Tim D. Smith,

and Ilana Segall. 2019. Federated Learning for Ranking Browser His-
tory Suggestions. arXiv:1911.11807 [cs.LG]

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In CVPR.

[19] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee,
Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P.
Xing. 2013. More Effective Distributed ML via a Stale Synchronous
Parallel Parameter Server. In NeurIPS.

[20] T. Hsu, Hang Qi, and Matthew Brown. 2020. Federated Visual Classifi-
cation with Real-World Data Distribution. In ECCV.

[21] Jiyue Huang, Chi Hong, Yang Liu, Lydia Y. Chen, and Stefanie Roos.
2022. Tackling Mavericks in Federated Learning via Adaptive Client
Selection Strategy. In AAAI.

[22] Rob J Hyndman and George Athanasopoulos. 2021. Forecasting: Prin-
ciples and Practice (3rd ed.). OTexts, Melbourne, Australia.

[23] Rob J Hyndman, Anne B Koehler, Ralph D Snyder, and Simone Grose.
2002. A state space framework for automatic forecasting using expo-
nential smoothing methods. International Journal of Forecasting 18, 3
(2002).

[24] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-
Aware Distributed Parameter Servers. In SIGMOD.

[25] Junchen Jiang, Yuhao Zhou, Ganesh Ananthanarayanan, Yuanchao
Shu, and Andrew A. Chien. 2019. Networked Cameras Are the New
Big Data Clusters. In HotEdgeVideo.

[26] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. 2019.
Improving Federated Learning Personalization via Model Agnostic
Meta Learning. arXiv:1909.12488 [cs.LG]

[27] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira,
Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià
Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Har-
chaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin
Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub
Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard
Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel
Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U.
Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth
Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X.
Yu, Han Yu, and Sen Zhao. 2019. Advances and Open Problems in
Federated Learning. arXiv:1912.04977 [cs.LG]

[28] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning:
Strategies for Improving Communication Efficiency. InWorkshop on
Private Multi-Party Machine Learning.

[29] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny
Images. Technical Report. University of Toronto.

[30] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan
Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci,
Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari. 2020. The
Open Images Dataset V4: Unified image classification, object detection,
and visual relationship detection at scale. International Journal of
Computer Vision 128 (2020).

[31] Fan Lai, Yinwei Dai, Xiangfeng Zhu, and Mosharaf Chowdhury. 2022.
FedScale: Benchmarking Model and System Performance of Federated
Learning. In ICML.

[32] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowd-
hury. 2021. Efficient Federated Learning via Guided Participant Selec-
tion. In OSDI.

[33] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for
Self-supervised Learning of Language Representations. In ICLR.

[34] Li Li, Moming Duan, Duo Liu, Yu Zhang, Ao Ren, Xianzhang Chen,
Yujuan Tan, and Chengliang Wang. 2021. FedSAE: A Novel Self-
Adaptive Federated Learning Framework in Heterogeneous Systems.
In IJCNN.

[35] Li Li, Haoyi Xiong, Zhishan Guo, Jun Wang, and Cheng-Zhong Xu.
2019. SmartPC: Hierarchical Pace Control in Real-Time Federated
Learning System. In RTSS.

[36] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated
Learning on Non-IID Data Silos: An Experimental Study. In ICDE.

[37] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. 2020. Federated Optimization in Het-
erogeneous Networks. In MLSys.

[38] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2020.
Fair Resource Allocation in Federated Learning. In ICLR.

[39] Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Han-
cox, Wentao Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin,
M. Jorge Cardoso, and Andrew Feng. 2019. Privacy-Preserving Fed-
erated Brain Tumour Segmentation. In Machine Learning in Medical
Imaging.

[40] M-Lab. 2021. MobiPerf: an open source application for measuring net-
work performance onmobile platforms. https://www.measurementlab.
net/tests/mobiperf/

https://ai-benchmark.com/ranking.html
https://ai-benchmark.com/ranking.html
https://arxiv.org/abs/2010.13723
https://docs.python.org/3/library/xmlrpc.html
https://docs.python.org/3/library/xmlrpc.html
https://github.com/pytorch/opacus
https://www.fedai.org
https://arxiv.org/abs/1911.11807
https://arxiv.org/abs/1909.12488
https://arxiv.org/abs/1912.04977
https://www.measurementlab.net/tests/mobiperf/
https://www.measurementlab.net/tests/mobiperf/

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

[41] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht,
Kannan Ramchandran, and Michael I Jordan. 2017. Perturbed Iterate
Analysis for Asynchronous Stochastic Optimization. SIAM Journal on
Optimization 27, 4 (2017).

[42] Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018.
Learning Differentially Private Recurrent Language Models. In ICLR.

[43] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agüera y Arcas. 2017. Communication-Efficient Learning
of Deep Networks from Decentralized Data. In AISTATS.

[44] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. 2019. Exploiting Unintended Feature Leakage in Collabo-
rative Learning. In SP.

[45] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. 2019. Ag-
nostic Federated Learning. In ICML.

[46] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive
Privacy Analysis of Deep Learning: Passive and Active White-box
Inference Attacks against Centralized and Federated Learning. In SP.

[47] Takayuki Nishio and Ryo Yonetani. 2019. Client Selection for Federated
Learning with Heterogeneous Resources in Mobile Edge. In ICC.

[48] PaddlePaddle.org. 2020. PArallel Distributed Deep LEarning: Machine
Learning Framework from Industrial Practice. https://github.com/
PaddlePaddle/PaddleFL

[49] Pushshift. 2020. Reddit Datasets. https://files.pushshift.io/reddit/
[50] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews, Galen An-

drew, H. Brendan McMahan, and Françoise Beaufays. 2020. Train-
ing Production Language Models without Memorizing User Data.
arXiv:2009.10031 [cs.LG]

[51] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jad-
babaie, and Ramtin Pedarsani. 2020. FedPAQ: A Communication-
Efficient Federated Learning Method with Periodic Averaging and
Quantization. In AISTATS.

[52] Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong.
2021. Towards Flexible Device Participation in Federated Learning. In
AISTATS.

[53] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Ja-
son Mancuso, Daniel Rueckert, and Jonathan Passerat-Palmbach.
2018. A generic framework for privacy preserving deep learning.
arXiv:1811.04017 [cs.LG]

[54] Sebastian U. Stich and Sai Praneeth Karimireddy. 2020. The Error-
Feedback Framework: Better Rates for SGD with Delayed Gradients
and Compressed Updates. Journal of Machine Learning Research 21
(2020).

[55] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Tal-
walkar. 2017. Federated Multi-Task Learning. In NeurIPS.

[56] Vijay Srinivasan, Saeed Moghaddam, Abhishek Mukherji, Kiran K.
Rachuri, Chenren Xu, and Emmanuel Munguia Tapia. 2014. MobileM-
iner: Mining Your Frequent Patterns on Your Phone. In UbiComp.

[57] Zoltán Szabó, Krisztián Téglás, Arpád Berta, Márk Jelasity, and Vil-
mos Bilicki. 2019. Stunner: A Smart Phone Trace for Developing
Decentralized Edge Systems. In DAIS.

[58] Sean J Taylor and Benjamin Letham. 2017. Forecasting at scale. PeerJ
Preprints:5:e3190v2

[59] Apple Differential Privacy Team. 2017. Learning with privacy at scale.
Apple Machine Learning Journal (2017).

[60] tensorflow.org. 2020. TensorFlow Federated: Machine Learning on
Decentralized Data. https://www.tensorflow.org/federated

[61] Jianyu Wang and Gauri Joshi. 2019. Adaptive Communication Strate-
gies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD.
In MLSys.

[62] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent
Poor. 2020. Tackling the Objective Inconsistency Problem in Hetero-
geneous Federated Optimization. In NeurIPS.

[63] Pete Warden. 2018. Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition. arXiv:1804.03209 [cs.CL]

[64] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and
Stephen Jarvis. 2021. SAFA: A Semi-Asynchronous Protocol for Fast
Federated Learning With Low Overhead. IEEE Trans. Comput. 70, 5
(2021).

[65] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2020. Asynchro-
nous Federated Optimization. InWorkshop on Optimization for Machine
Learning.

[66] Carl Yang, Xiaolin Shi, Luo Jie, and Jiawei Han. 2018. I Know You’ll
Be Back: Interpretable New User Clustering and Churn Prediction on
a Mobile Social Application. In KDD.

[67] Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui
Bian, Yunxin Liu, and Xuanzhe Liu. 2021. Characterizing Impacts of
Heterogeneity in Federated Learning upon Large-Scale Smartphone
Data. In The Web Conference.

[68] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li,
Nicholas Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied
Federated Learning: Improving Google Keyboard Query Suggestions.
arXiv:1812.02903 [cs.LG]

[69] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-
Aware Async-SGD for Distributed Deep Learning. In IJCAI.

[70] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shuf-
fleNet: An Extremely Efficient Convolutional Neural Network for
Mobile Devices. In CVPR.

A Artifact Appendix
In this part, we give a roadmap for the evaluation of our
artifact [1].

A.1 Abstract
The artifact is a code repository that contains the scripts
and instructions for running our resource-efficient federated
learning (REFL) framework. REFL systematically addresses
the question of resource efficiency in FL, showing the benefits
of intelligent participant selection, and incorporation of up-
dates from straggling participants. REFL uses FedScale frame-
work (http://fedscale.ai) as the base for the implementation
specifically this commit (https://github.com/SymbioticLab/
FedScale/tree/1d0201fded6ae924f39d3bc8ecfbd0901f58c7ff).
FedScale provides a diverse set of datasets and benchmarks
for FL training and evaluation. The benchmarks we cover in
REFL are encompassing a diverse range of important FL tasks,
such as image classification, natural language modelling, and
speech recognition. REFL inherits the flexibility of FedScale
and can run over various other benchmarks (https://github.
com/SymbioticLab/FedScale/tree/master/benchmark/dataset)

A.2 Description & Requirements
We provide the information necessary to recreate the same
experimental setup as we have used to run our artifact.

A.2.1 How to access: The artifact can be accessed at [1].
The code repo needs to be cloned on every server used for
running the experiments. The code repo includes README
files with fully detailed instructions. It also includes in-
stall.sh script which takes care of the installations of the ana-
conda (if necessary, uncomment in the script), the condo en-
vironment, and any CUDA binaries (if necessary, uncomment

https://github.com/PaddlePaddle/PaddleFL
https://github.com/PaddlePaddle/PaddleFL
https://files.pushshift.io/reddit/
https://arxiv.org/abs/2009.10031
https://arxiv.org/abs/1811.04017
https://www.tensorflow.org/federated
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1812.02903
http://fedscale.ai
https://github.com/SymbioticLab/FedScale/tree/1d0201fded6ae924f39d3bc8ecfbd0901f58c7ff
https://github.com/SymbioticLab/FedScale/tree/1d0201fded6ae924f39d3bc8ecfbd0901f58c7ff
https://github.com/SymbioticLab/FedScale/tree/master/benchmark/dataset)
https://github.com/SymbioticLab/FedScale/tree/master/benchmark/dataset)

REFL: Resource-Efficient Federated Learning EuroSys ’23, May 8–12, 2023, Rome, Italy

in the script). It also includes a dataset folder with a down-
load.sh script to automate the download of the datasets
used in experiments. Finally, it includes a plots folder with
a plot_exp.py script to enable the plotting of the figures
appearing in the paper.

A.2.2 Hardware dependencies. Running experiments do
not mandate any special hardware. However, to run the ex-
periments in a reasonable amount of time servers with fast
Nvidia GPUs (e.g., A100/V100) are recommended. However,
due to the scale of the experiments conducted in this study,
it may not be feasible to reproduce it due to the large cost in-
curred. To give an estimate, even with advanced GPUs such
as A100/V100 GPUs, it took a significant amount of time to
run them (i.e., 13000 hours of GPU time). This makes it quite
hard to reproduce the claims/figures within the time frame
set for evaluation (24 hours) which would require roughly a
total of 550 A100 GPUs.

A.2.3 Software dependencies. The experiments primar-
ily require python and anaconda software (and CUDA bina-
ries if GPUs are used). The repo contains the envirnoment.yml
file with all the necessary packages and dependencies.

A.2.4 Benchmarks. We detail the benchmarks in Table 1
and describe them in detail in Section 5. However, we use
only google_speech for running the examples.

A.3 Setup
NOTE: Please assure that the paths to the code and datasets
are consistent across all nodes so that the simulator can find
the right path. Alternatively, you could do the setup on a
shared storage directory. After cloning the repo, the main
directory is REFL. First, edit install.sh script if necessary.
Please, uncomment the parts relating to the installation of
the Anaconda Package Manager, CUDA 10.2 if they are not
already present on the servers. Note, if you prefer different
versions of conda and CUDA, please check the comments
in ‘install.sh‘ for details. After editing, run the following
commands to prepare the environment:
source install.sh

Then, run the following commands to install Oort.
cd thirdparty
python oort_setup.py install

Setting the cluster: Each experiment uses a single server
to run. So for All Nodes, follow the instructions above
(or in README.md file) to install all necessary libs, and
then download the datasets by following the instructions in
dataset/README.md.
Creating a WANDB account: The experiment results are
collected and uploaded via the WANDB visualization tool
(https://wandb.ai), therefore it is necessary to create aWANDB
account. Then, login into the created account in the terminal
using command wandb login.

Setting the environment variables: It is necessary to set
the following environment variables in the experiments run
scripts run_exps.sh, run_E1.sh, or run_E2.sh
#If not logged to WANDB from the terminal on the

server, obtain the WANDB_API_KEY. Also, you
need to set WANDB entity name (i.e.,
username or team). These can obtained from
the setting webpage of the wandb account.

↩→

↩→

↩→

↩→

export WANDB_API_KEY='WANDB_API_KEY'
export WANDB_ENTITY='username'
#the path to the project
export MAIN_PATH=/home/user/REFL
#the path to the dataset
export

DATA_PATH=/home/user/REFL/dataset/data/$dataset↩→

#the path to the conda envirnoment
export CONDA_ENV=/anaconda/envs/refl
#the path to the conda source script
export

CONDA_PATH=/anaconda/etc/profile.d/conda.sh↩→

A.4 Evaluation workflow
In this part, we give all the operational steps and experiments
which must be performed to evaluate whether our artifact is
functional and to validate our paper’s key results and claims.

A.4.1 Example claims. The following are some of the
claims made in your paper.

• (C1): REFL achieves significantly higher accuracy (up
to roughly 58%) compared to Oort, the state-of-the-art
system, for Google speech task while saving 33% of
the resources used and with lower time by roughly
20%. This is proven by the experiment (E1) described
in Section 5.2.1 whose results are illustrated/reported
in Fig. 9b.

• (C2): REFL achieves the same accuracy of SAFA, an-
other state-of-the-art system, for Google speech tasks
while saving more than 54% of the resources used.
This is proven by the experiment (E2) described in
Section 5.2.2 whose results are illustrated/reported in
Fig. 10b.

A.4.2 Experiments. In the following, we give the descrip-
tion of scaled-down experiments with 1000 clients, to finish
in a reasonable time, to verify the aforementioned claims.

Experiment (E1): [REFL vs Oort] [15 human-minutes
+ 24 compute-hour on two servers each equipped with 4
A100/V100 GPUs]: This experiment compares REFL vs Oort
with 2000 (instead of 5000) rounds and is expected that REFL
would achieve higher accuracy with lower resources and
time.
[How to:] To run this experiment we customize the settings
in run_exps.sh script in the repo for this experiment and

https://wandb.ai

EuroSys ’23, May 8–12, 2023, Rome, Italy Ahmed M. Abdelmoniem, Atal N. Sahu, Marco Canini, and Suhaib A. Fahmy

provide the script run_E1.sh to collect and organize the results
as expected from your paper. We encourage you to use the
following structure with three main blocks for the description
of your experiment. [Preparation] The step required to prepare
and configure the environment is to ensure that the google
speech dataset are downloaded:

cd dataset; bash download.sh -s

Then, in the main directory, to run the experiment, simply
activate the conda environment refl first:

conda activate refl

[Execution] To run the experiment, from the terminal while
at the main directory REFL, simply invoke the run_E1.sh
script and give the google_speech as the input to use the
google speech benchmark :

conda activate refl #or source activate refl
bash run_E1.sh google_speech

[Results] The experiment results are collected and uploaded
via the WANDB visualization tool (wandb.ai). To plot the
results, there is plot_exp.py scrip in the plots directory
which helps with plotting the results. To plot the results for
this particular experiment use:

python plots/plot_exp.py 'exp_type'

google_speech_resnet34 'oort' 'Test' 1 10↩→

Experiment (E2): [REFL vs SAFA] [15 human-minutes + 24
compute-hour on two servers each equippedwith 4A100/V100
GPUs]: This experiment compares REFL with SAFA in run
with 250 rounds and it is expected that REFL would achieve
the same accuracy with lower resources compared to SAFA.
[How to:] To run this experiment we customize the settings
in run_exps.sh script in the repo for this experiment and
provide the script run_E2.sh. to collect and organize the
results as expected from your paper. We encourage you to
use the following structure with three main blocks for the
description of your experiment.

[Preparation] Ensure that the google speech dataset is down-
loaded, if not downloaded already:
cd dataset; bash download.sh -s

Then, in the main directory, to run the experiment, simply
activate the conda environment refl first:
conda activate refl

[Execution] To run the experiment, from the terminal while
at the main directory REFL, simply invoke the run_E1.sh
script and give the google_speech as the input to use the
google speech benchmark :
conda activate refl
bash run_E2.sh google_speech

[Results] The experiment results are collected and uploaded
via the WANDB visualization tool (wandb.ai). To plot the
results, there is plot_exp.py scrip in the plots directory
which helps with plotting the results. To plot the results for
this particular experiment use:
python plots/plot_exp.py 'safa'

google_speech_resnet34 'safa' 'Test' 0 1000↩→

A.5 Notes on Reusability
REFL can incorporate any new realistic FL traces and datasets
as specified by the developer. The user can provide new de-
vice and behavior profiles as well as add new models and
datasets to simulate various types of benchmarks or new
FL schemes and algorithms. REFL emulates the practical FL
workflow as it involves the following steps to run the exper-
iments: 1) Task submission where the FL developers specify
their configurations (model, dataset, hyper-parameters) and
the resource manager will allocate resources for the aggrega-
tor and executors; 2) FL simulationwhich follows he common
FL phases as in Fig. 1 where in each round, the aggregator
asks the client manager to select the learners, and the re-
source manager assigns the clients to the available client
executor.

wandb.ai
wandb.ai

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Existing FL Systems

	3 The Case for Resource-Efficient FL
	3.1 System Efficiency vs. Resource Diversity
	3.2 Stale Updates & Resource Wastage
	3.3 Participant Selection & Resource Diversity

	4 REFL Design
	4.1 Intelligent Participant Selection (IPS)
	4.2 Staleness-Aware Aggregation (SAA)

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Discussion
	7 Integration with FL Frameworks
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Setup
	A.4 Evaluation workflow
	A.5 Notes on Reusability

