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Abstract

Gradient compression is a widely-established remedy to tackle the communication
bottleneck in distributed training of large deep neural networks (DNNs). Under
the error-feedback framework, Top-k sparsification, sometimes with k as little
as 0.1% of the gradient size, enables training to the same model quality as the
uncompressed case for a similar iteration count. From the optimization perspective,
we find that Top-k is the communication-optimal sparsifier given a per-iteration
k element budget. We argue that to further the benefits of gradient sparsification,
especially for DNNs, a different perspective is necessary — one that moves from
per-iteration optimality to consider optimality for the entire training.
We identify that the total error — the sum of the compression errors for all it-
erations — encapsulates sparsification throughout training. Then, we propose a
communication complexity model that minimizes the total error under a commu-
nication budget for the entire training. We find that the hard-threshold sparsifier,
a variant of the Top-k sparsifier with k determined by a constant hard-threshold,
is the optimal sparsifier for this model. Motivated by this, we provide convex
and non-convex convergence analyses for the hard-threshold sparsifier with error-
feedback. We show that hard-threshold has the same asymptotic convergence
and linear speedup property as SGD in both the case, and unlike with Top-k
sparsifier, has no impact due to data-heterogeneity. Our diverse experiments
on various DNNs and a logistic regression model demonstrate that the hard-
threshold sparsifier is more communication-efficient than Top-k. Code is available
at https://github.com/sands-lab/rethinking-sparsification.

1 Introduction

With the emergence of huge DNNs consisting of hundreds of millions to billions of parameters [12,
50], distributed data-parallel training [66] is an increasingly important workload. As the training
process typically spans several compute nodes (or workers) that periodically exchange the local
gradient vectors at each iteration of the optimizer (e.g., SGD), communication among nodes remains
in many cases the main performance bottleneck [32, 40, 46].

Lossy gradient compression techniques are becoming a common approach to rein in communication
efficiency [62]. In particular, sparsification, which sends only a subset of gradient coordinates (e.g.,
Top-k [4, 8] sends the k largest gradient coordinates by magnitude in each iteration), may significantly
reduce data volumes and thus speed up training. However, due to its lossy nature, compression raises
a complex trade-off between training performance and accuracy. For instance, Agarwal et al. [3] note
that training ResNet-18 on CIFAR-100 using sparsification speeds up training significantly (3.6×),
but it also degrades final accuracy by 1.5%. On the other hand, Lin et al. [37] reports a 500× data
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Figure 1: Convergence of Top-k and Hard-threshold for a logistic regression model on gisette LIBSVM
dataset with 20 workers: (a) Functional suboptimality vs. epochs; (b) functional suboptimality vs. bits
communicated; (c) error norm vs. epochs. Hard-threshold converges as fast as the baseline, no compression
SGD and much faster than Top-k because of a smaller total-error than Top-k.

reduction via sparsification under deep gradient compression (DGC) for ResNet-50 on ImageNet
while preserving the same final accuracy when adopting a carefully-tuned warmup phase.

The vast literature on gradient compression largely considers a fixed communication budget per
iteration while leaving it up to practitioners to grapple with specifying an additional hyper-parameter
that determines the degree of compression before training begins. Meanwhile, recent adaptive Top-k
sparsifiers [3, 65] empirically demonstrate that tuning the degree of compression in different phases
of DNN training yields a more communication-efficient scheme than a fixed compression scheme
(e.g., a static k for Top-k). However, these works lack a theoretical framework proving that adaptive
compression enjoys better convergence guarantees than the fixed compression scheme.

This raises a fundamental question: Given a fixed communication budget, is there a provably better
communication scheme than fixed per-iteration compressed communication? We first observe that
Top-k is the communication-optimal sparsifier for a fixed per-iteration communication budget (§4.3).
Then, our insight is that by adopting a different perspective that accounts for the effect of sparsification
throughout training, a more efficient communication scheme is possible under a revised notion of
optimality that considers an overall communication budget (instead of a per-iteration budget).

We consider sparsification by using the error-feedback (EF) mechanism [8, 53], a delayed gradient
component update strategy that is instrumental for the convergence of the state-of-the-art sparsifiers
[10]. Let et denote the error arising due to sparsification at iteration t. In EF, this error is added to the
gradient update at iteration t+ 1. We identify that the term affecting the non-convex convergence in
EF-SGD is the total-error:

∑
t‖et‖2 [33, 54].

Directly minimizing the total-error is not possible; thus, Top-k minimizes ‖et‖2 at each iteration.
We argue that it is possible to focus on the sum of ‖et‖2 and devise a communication scheme that
achieves a smaller total-error than any fixed communication sparsifier. We demonstrate that to achieve
this change of perspective; it is sufficient to consider a practical yet straightforward mechanism that
is a natural counterpart of Top-k: the hard-threshold sparsifier, which communicates the gradient
coordinates with magnitude greater than or equal to a fixed given threshold, λ ≥ 0, in each iteration.
Although the two sparsifiers are in an equivalence relation (a given λ corresponds to a k), under the
total-error minimization perspective, we adopt a fixed threshold, λ, which implies a variable k at
every iteration.

To illustrate intuitively why this change of perspective yields benefits, consider the following example.
Figure 1 shows an experiment in the distributed setting where 20 workers train a 6,000-parameter
logistic regression model on the gisette LIBSVM dataset [14] by using the Top-k and hard-
threshold sparsifiers, configured to send the same data volume.1 The loss function is strongly convex
and has a unique minimizer, x?, therefore, a unique optimum, f(x?). We see that hard-threshold
converges at the same speed as SGD while communicating ∼ 600× less data, whereas Top-k has
a significantly slower convergence speed. We attribute this to the fact that Top-k has a large error
accumulation in the initial 500 iterations, while the error magnitude for hard-threshold is less than
0.04 throughout training (cf. Figure 1c). Our results with DNN training also reflect this insight (§6).

1We train for 10 epochs and set k = 0.17% for Top-k, and λ = 4.2 for hard-threshold.
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Moreover, the hard-threshold sparsifier has computational benefits over Top-k sparsifier, as hard-
threshold’s underlying filtering operation requires d comparisons in each iteration, where d is the
number of parameters. In contrast, Top-k is a compute-intensive sparsifier (e.g., on CPU, the
computational complexity is O(d log2 k) [48]). For GPUs, several optimized implementations are
proposed but they rely on the data distribution and are efficient only for a small k [48]. For instance,
PyTorch uses Radix select algorithm [5] which has a computational complexity ofO (db/re d) where
b is the number of bits to represent gradient values and r is the radix size [42].

Finally, while the hard-threshold sparsifier already exists in the literature [20, 55], we are the first
to formally study it and theoretically demonstrate its benefits as an adaptive counterpart of Top-k.
Moreover, our argument in favor of hard-threshold precisely falsifies the claim by Dryden et al. [18]
that stopped its widespread adoption — a hard-threshold may lead to a degenerate situation when
the EF in gradient compression builds up.

This paper makes the following contributions:

Communication complexity model (§4). We propose a communication complexity model that
captures the effects of compression in the entire optimization process. We allow for variable
communication in each iteration by only imposing a total communication budget. We show that the
hard-threshold sparsifier is the communication-optimal sparsifier in this model.

Absolute compressors (§5). We identify that the hard-threshold sparsifier, along with other existing
compressors [16, 46], belongs to the class of absolute compressors, which have an absolute bound on
the error. Absolute compressors have not been formally studied before with EF. We show that absolute
compressors with EF converge for both strongly convex and non-convex loss functions. In both
cases, similar to the δ-contraction operators [33], absolute compressors enjoy the same asymptotic
convergence with linear speedup (with respect to the number of workers) as no-compression SGD.
However, δ-contraction operators have a worse dependence on δ in the distributed setting with
heterogeneous data, while absolute compressors do not have such an anomaly.

Experiments (§6). We conduct diverse experiments on both strongly convex and non-convex (for
DNNs) loss functions to substantiate our claims. Our DNN experiments include computer vision,
language modeling, and recommendation tasks, and our strongly convex experiment is on logistic
regression. We find that the hard-threshold sparsifier is consistently more communication-efficient
than the Top-k sparsifier given the same communication budget.

2 Related work

Gradient compression techniques can be broadly classified into quantization [7, 16, 33, 47, 60],
sparsification [4, 37, 59], hybrid compressors [9, 18, 55], and low-rank methods [57, 58]. The state-
of-the-art compressors are biased δ-contraction operators [37, 57], see §4.5. We refer to [62] for a
recent survey and quantitative evaluation of these techniques.

Error-feedback (EF) or memory was first empirically used in [47, 55]. However, [33, 53, 54] were
the first to give a convergence analysis of the EF framework, which was extended to the distributed
setup in [10, 64]. Recently, [61] proposed error-reset, a different form of EF, while [29] introduced
another alternative by communicating a compressed version of the error. EF has also been combined
with variance-reduction [22, 43] and acceleration [44].

Communication-optimal compression. [6, 15, 21, 45] devised a communication-optimal compres-
sor by minimizing the worst-case compression factor2 under a per-vector communication budget.

Adaptive compression. [59] designed an adaptive sparsifier that minimizes expected sparsity of
the compressed vector under a given variance budget. While AdaQS [23] periodically doubles the
quantization states in QSGD [7] to reduce the compression factor, DQSGD [63] sets the number of
quantization states proportional to the gradient norm. ACCORDION [3] chooses a low compression
ratio if training is in a critical regime [2], and a high compression ratio otherwise.

2For a vector x and a possibly randomized compression operator C, we denote the compression error as
EC[‖x− C(x)‖2], and compression factor as EC [‖x− C(x)‖2]/‖x‖2.
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Efficient Top-k estimation is a focus of many recent works. While [37] estimates the Top-k threshold
on a randomly sampled subset, [1, 49] estimate it by fitting parametric statistical distributions. [25]
estimates the threshold every 1, 000 iterations. These works determine a threshold to approximately
determine a fixed Top-k set, while we use a hard-threshold to determine the k in each iteration.

3 Background on Error-Feedback (EF) SGD

Consider the following distributed optimization problem with n workers:
minx∈Rd f(x) := 1

n

∑
i∈[n] fi(x), (1)

where fi(x) = Ezi∼Di l(x; zi) denotes the loss function evaluated on input zi sampled from Di, the
data-distribution at the ith worker. Let gi,t denote the stochastic gradient computed at ith worker at
iteration t such that gi,t = ∇fi(xt) + ξi,t with E[ξi,t|xt] = 0.

Algorithm 1 gives the pseudo-code of compressed EF SGD [8, 33, 53] to solve (1). Let ei,t denote
the locally accumulated error at ith worker due to compression from previous steps. Adding this
error to the current gradient, γtgi,t provides the corrected update, pi,t, where γt > 0 is the step-size.
This corrected update is further compressed and exchanged with other machines, and the local error
is updated for the next step.

Algorithm 1: Distributed EF SGD
Input: C-compressor
Initialize x0 ∈ Rd;
for worker i ∈ [n] in parallel do

Initialize error ei,0 = 0;
for iteration t = 0, . . . , T − 1 do
pi,t ← ei,t + γtgi,t /* Incorporate EF into update */;
∆i,t ← γtC(pi,tγt ) ;
ei,t+1 ← pi,t −∆i,t /* Update error */;
∆̄t = 1

n

∑
i∈[n] ∆i,t /* Exchange and average ∆i,t among workers */;

xt+1 ← xt − ∆̄t;

Remark 1. In Algorithm 1, we have ∆i,t ← γtC(pi,tγt ), while [8, 33, 53] consider ∆i,t ← C(pi,t).
We do this to extend the EF framework for absolute compressors. We note that Algorithm 1 is more
general as γtC(pi,tγt ) is equivalent to C(pi,t) for all known δ-contraction operators.

3.1 Assumptions

We consider the following general assumptions on the loss function.
Assumption 1. (Smoothness) The function, fi : Rd → R at each worker, i ∈ [n] is L-smooth, i.e.,
for every x, y ∈ Rd we have, fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉+ L

2 ‖y − x‖2.

Assumption 2. (Global minimum) There exists x? such that, f(x?) = f? ≤ f(x), for all x ∈ Rd.
Assumption 3. ((M,σ2) bounded noise) [54] For every stochastic noise ξi,t, there exist M,σ2 ≥ 0,
such that E[‖ξi,t‖2 | xt] ≤M‖∇fi(xt)‖2 + σ2, for all xt ∈ Rd.

Remark 2. The above assumption implies E[‖gi,t‖2 | xt] ≤ (M + 1)‖∇fi(xt)‖2 + σ2. This general
noise model does not uniformly bound the second moment of stochastic gradients as in [9, 33, 64].
Assumption 4. ((C, ζ2) bounded similarity) The variance of gradients among workers is bounded,
i.e., there exist constants, C, ζ ≥ 0 such that, 1

n

∑
i∈[n]‖∇fi(x)−∇f(x)‖2 ≤ C‖∇f(x)‖2 + ζ2,

for all x ∈ Rd.
Remark 3. If all the workers have the same training data, all fi are the same, resulting in C, ζ = 0.
This assumption is an extension from [31, 36], which consider C = 0.

For the convergence of strongly convex functions, we require an additional assumption as follows.
Assumption 5. (µ-strong convexity) The functions, fi : Rd → R are µ-strongly convex, i.e., there
exists µ ≥ 0, such that fi(y) ≥ fi(x) + 〈∇fi(x), y − x〉+ µ

2 ‖x− y‖2, for all x ∈ Rd.
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Convergence of EF-SGD. The following result shows the convergence of EF-SGD [33] in minimiz-
ing general smooth functions for a single worker (n = 1) case.
Theorem 1. [33, 54] Let Assumption 1, 2 and 3 hold. Then Algorithm 1 with a constant step-size, γ
where γ ≤ 1

2L(M+1) and n = 1 follows

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
4(f(x0)− f?)

γT
+ 2γLσ2 + 2L2

T−1∑

t=0

γ2E‖gt + et
γ − C(gt + et

γ )‖2
T

.

Remark 4. Theorem 1 is a simplified version of the distributed case for n > 1 and quoted to emphasize
the effect of compression between the error-corrected gradient, gt + et

γ , and its compressed form,
C(gt + et

γ ). The term that solely accounts for the effect of compression in the entire training process

is the total-error:
∑T−1
t=0 E‖et+1‖2 =

∑T−1
t=0 γ2E‖gt + et

γ − C(gt + et
γ )‖2.

4 A communication complexity perspective to sparsification

We now propose a communication complexity model and contrast it with the existing communication-
optimal strategies. We note that our use of the word communication-optimal is in the sense of
optimization upper-bounds. Convergence analyses of compressed SGD capture the effect of compres-
sion via the compression error, and this effect is always inverse — the lower the compression error, the
better the optimization upper bound [22, 29]. Therefore, ours and the existing works [6, 15, 21, 45]
design communication-optimal strategies by optimizing the compression error related term. We start
with a sparse approximation problem that we encounter in our subsequent discussions.

4.1 A sparse approximation problem

Let p ∈ Rm be a given vector. We want to approximate p with a sparse vector, q, that has at most
0 < τ ≤ m non-zero elements. Formally, we write the constrained sparse approximation problem as:

q? = arg minq∈Rm‖p− q‖2 subject to ‖q‖0 ≤ τ, (2)
where ‖ · ‖0 denotes the number of non-zero elements in a vector. Problem (2) and its variants are
well studied and arise in signal processing [13, 17, 19] and matrix approximation [11, 51].
Lemma 1. The solution q? to (2) is obtained by keeping Top-τ magnitude entries from p and setting
the rest to zeros.

4.2 Minimizing the total-error is not possible

Let C denote the class of all compressors. We constrain to the class of deterministic sparsifiers, denoted
by S ⊂ C, but one can similarly consider other subclasses in C. For each x ∈ Rd, a deterministic
sparsifier, Cp with sparsification parameter, p determines a sparse support set, Sp(x) ⊆ [d] and
sparsifies as

Cp(x) =
∑
i∈Sp(x) x[i]ei,

where ei denotes the ith standard basis in Rd, and x[i] denotes the corresponding element in x. For
example, for hard-threshold sparsifier, Cλ, we have Sλ(x) = {i | |x[i]| ≥ λ}. Motivated by Theorem
1 and Remark 4, we now propose the following communication complexity model:

min
C∈S

T−1∑

t=0

E‖gt +
et
γ
− C(gt +

et
γ

)‖2 subject to
T−1∑

t=0

‖C(gt +
et
γ

)‖0 ≤ K, (3)

where K is the budget on the number of elements communicated in T iterations. However, solving
(3) is intractable owing to complex DNN loss functions and multiple sources of randomness.

4.3 Top-k is communication-optimal for a per-iteration k element budget

To simplify (3), one can focus individually at the error at each iteration. Based on this, we show
in Lemma 2 that Top-k has the best compression error among all sparsifiers under a per-iteration
k-element communication budget.
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Lemma 2. Given the gradient gt and error et at iteration t, Top-k sparsifier achieves the optimal
objective for the optimization problem:

min
C∈S
‖gt +

et
γ
− C(gt +

et
γ

)‖2 subject to ‖C(gt +
et
γ

)‖0 ≤ k. (4)

Similar to Lemma 1, (4) is solved when C(gt + et
γ ) contains the k highest magnitude elements of

gt+
et
γ . That is, when C is the Top-k sparsifier. Additionally, based on the above model, a per-iteration

k-element communication budget (resulting in a total budget of kT elements throughout training),
implies that Top-k is performed at each iteration. However, to have a more communication-efficient
compression, we require a communication complexity model that (i) better captures total-error in
Theorem 1; and (ii) allows for adaptive communication, i.e., sends variable data in each iteration.

4.4 A communication complexity model for adaptive sparsification

Although the total-error cannot be minimized (§4.2), Lemma 2 motivates us to consider a simplified
model that can capture the total-error. Instead of (gt + et

γ )T−1
t=0 , we consider a fixed sequence (at)

T−1
t=0

and examine the following communication complexity model:

minC∈S
∑T−1
t=0 ‖at − C(at)‖2 subject to

∑T−1
t=0 ‖C(at)‖0 ≤ K, (5)

where K ∈ N denotes the total communication budget. For the sake of simplicity, we assume that no
two elements in (at)

T−1
t=0 have the same magnitude.

Let A ∈ RdT be formed by stacking (at)
T−1
t=0 vertically and consider the following sparse approxima-

tion problem:
minB∈RdT ‖A −B‖2 subject to ‖B‖0 ≤ K, (6)

Note that (6) allows for all B that are formed by stacking (C(at))T−1
t=0 vertically, for some sparsifier

C satisfying
∑T−1
t=0 ‖C(at)‖0 ≤ K. Therefore, the optimal objective for (6) is a lower bound to

the optimal objective for (5). Let A(i) denote the element with ith largest magnitude in A, and
since no two elements have the same magnitude, we have, A(i+1) 6= A(i), for all i ∈ [dT ]. Then,
B = Cλ(A) with λ ∈

(
A(K+1), A(K)

]
contains the Top-K magnitude entries from A, and therefore,

by Lemma 1 is optimal for (6). Moreover, since hard-threshold is an element-wise sparsifier, Cλ(A)

is equivalent to stacking (Cλ(at))
T−1
t=0 vertically. Therefore, Cλ with λ =

(
A(K+1),A(K)

]
achieves

optimal objective in (5). The following lemma formalizes this.
Lemma 3. Cλ is optimal for the communication complexity model (5). That is, for every budget K,
there exists a λ ≥ 0 such that Cλ minimizes (5).

4.5 Discussion

To capture the effect of compression, existing works [7, 33, 53] use a bound on the compression
factor, maxx∈Rd

EC‖C(x)−x‖2
‖x‖2 . We formally define them as relative compressors.

Definition 2. Relative Compressor [7, 53]. An operator, C : Rd → Rd is a relative compressor if
for all vector, x ∈ Rd it satisfies

EC‖x− C(x)‖2 ≤ Ω‖x‖2, (7)

where Ω > 0 is the compression factor and the expectation, EC , is taken with respect to the
randomness of C. δ-contraction operators [33, 53] with Ω = 1− δ and δ ∈ (0, 1], are special cases
of relative compressors.

Top-k is a δ-contraction operator with δ = k
d [53]. Therefore, by (7), Top-k allows for larger

compression error with larger inputs. Our communication complexity model demonstrates that
this might not necessarily be a good idea. Moreover, with EF, a large error at any iteration has a
cascading effect — a large et results in a large γgt + et, out of which only k/d fraction of the total
components are kept by the Top-k strategy. This results in a large et+1 (see §C.2). Figure 1 shows
that this error-buildup has severe implications on the total-error. On the other hand, the hard-threshold
performs a variable Top-k in each iteration and sends an element as soon as its magnitude is bigger
than the threshold. This prohibits the error build-up.
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Comparison with existing communication-optimal compression strategies. Since the compres-
sion factor, Ω solely determines the effect of compression in convergence [29, 54], many recent works
[6, 15, 21, 45] propose communication-optimal compression strategies by optimizing for Ω under a
communication budget for each vector, i.e., they propose to solve

min
C∈C

max
x∈Rd

EC‖x− C(x)‖2
‖x‖2 subject to Bits(C(x)) ≤ B, (8)

where Bits(C(x)) denotes the number of bits needed to encode C(x). We stress that while the
compression affected term in Theorem 1 has the sum of compression errors over the iterations, the
above communication complexity model only captures the compression factor.

5 Absolute compressors and their convergence

Motivated by the previous section, we formally define absolute compressors — compressors that
have an absolute bound on the error.

Definition 3. Absolute Compressor. An operator, C : Rd → Rd is an absolute compressor if there
exists a υ > 0 such that for all vectors, x ∈ Rd it satisfies

EC‖x− C(x)‖2 ≤ υ2. (9)

In contrast to the relative compressors in (7), the compression error (or variance) of absolute com-
pressors is bounded by a constant, independent of x. Based on the above definition, hard-threshold is
an absolute sparsifier with υ2 = dλ2. The stochastic rounding schemes, used for model quantization,
with bounded rounding error in [24] are absolute compressors. Precisely, any rounding scheme, with
rounding error bounded by ε, is an absolute compressor with υ2 = dε2. Similarly, the scaled integer
rounding scheme in [46] is an absolute compressor. While this class of compressors existed in the
literature, we are the first to provide their convergence result with an EF.

5.1 Convergence results

Inspired by [54], we establish convergence of EF-SGD (Algorithm 1) with absolute compressors.
Convergence analysis for the momentum case [64] can be extended similarly. However, we do not
include it for brevity, and the existing analyses do not show any benefit over vanilla SGD. Similarly,
analysis for error-reset [61] and local updates [9, 61] can also be extended. We provide convergence
results for the convex and non-convex cases and compare them to δ-contraction operators. We start
with a bound on the error for absolute compressors.
Remark 5. (Error bound) For all i ∈ [n], t ∈ {0, . . . T − 1}, we have

EC [‖ei,t+1‖2 | pi,t] = EC‖pi,t − γtC(pi,tγt )‖2 = γ2
t EC‖pi,tγt − C(

pi,t
γt

)‖2 ≤ γ2
t υ

2.

A similar absolute bound for δ-contraction operators requires the bounded gradient assumption
[33, 9], but absolute compressors achieve this by design.

5.1.1 Convex convergence

Let x̄T = 1
WT

∑T
t=0 wtxt be the weighted average of the iterates with weights, wt ≥ 0 and

WT =
∑T
t=0 wt. Additionally, let Pt := E[f(x̄t)] − f? be the expected suboptimality gap at the

average iterate. Further denote Rt := ‖xt − x?‖2 and D := 1
n

∑n
i=1‖∇fi(x?)‖2. With these

notations, we quote the strongly convex (µ > 0) and convex (µ = 0) convergence results for absolute
compressors, and compare them with the δ-contraction operators from [10] for distributed case
(n ≥ 1). The results below are for specific choices of step-sizes and weights; we refer to §B.4.1 for
these choices.

Theorem 4. Let µ > 0 and Assumptions 1, 2, 3, and 5 hold. Then the iterates, {xt}t≥0 of Algorithm
1 with an absolute compressor, Cυ , a constant step-size, γ(T ) with γ(T ) ≤ 1

4L(1+2M/n) follow 3

PT = Õ
(
LR0(1 +M/n) exp

[
− µT

8L(1+2M/n)

]
+ σ2+MD

µnT + Lυ2

µ2T 2

)
.

3The Õ notation hides constants and factors polylogarithmic in the problem parameters.
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Remark 6. Under the same setting as in Theorem 4, iterates of Algorithm 1 with δ-contraction
operators follow:

PT = Õ
(
LR0

(√
1+Mδ
δ

)
exp

[
− µδT

16
√

3L
√

2+Mδ

]
+ σ2+MD

µnT + L(D(1+Mδ)+δσ2)
µ2δ2T 2

)
.

Remark 6 implies, in distributed settings with heterogeneous data (D 6= 0), δ-contraction operators
have an 1/δ2 dependence on δ, as compared to an 1/δ dependence in the homogeneous case (D = 0).
In contrast, absolute compressors have the same υ2 dependence on υ in both cases. Therefore, we
conjecture it is beneficial to use absolute compressors in settings such as federated learning [38],
where data heterogeneity is widely encountered.

Theorem 5. Let µ = 0 and Assumptions 1, 2, 3, and 5 hold with D 6= 0. Then the iterates, {xt}t≥0

of Algo. 1 with an absolute compressor, Cυ, a constant step-size, γ(T ) with γ(T ) ≤ 1
4L(1+2M/n)

follow

PT = O
(√

(σ2+MD)R0√
nT

+

(
nLυ2

σ2+MD
+L(1+M/n)

)
R0

T

)
.

Remark 7. Theorem 5 holds when both σ2 and D are not simultaneously zero. Typically, we
encounter heterogeneous data settings where D 6= 0, and Theorem 5 holds. In case both σ2 and D

are zero, we get O( (LυR0)
2
3

T
2
3

+ L(1+M/n))R0

T ) convergence.

Remark 8. Under the same setting as in Theorem 5, iterates of Algorithm 1 with δ-contraction
operators follow:

PT = O



√

(σ2+MD)R0√
nT

+

(
L
√

1+Mδ
δ +

nL(D(1+Mδ)+δσ2)

δ2(σ2+MD)

)
R0

T


 .

Similar to Remark 6, we observe that δ-contraction operators have 1/δ2 dependence on δ in the
heterogeneous case, and a 1/δ dependence in the homogeneous case, while absolute compressors
have no such anomaly.

Designing a variance-reduced algorithm [22, 43, 44] by using absolute compressors with EF is a
fruitful direction of future research.

5.1.2 Non-convex convergence

Theorem 6. (Non-convex convergence of absolute compressors) Let Assumptions 1, 2, 3, and 4
hold. Then the iterates, {xt}t≥0 of Algorithm 1 with an absolute compressor and a constant step-size
γ ≤ n

2L(M(C+1)+n) follow
1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ 4(f(x0)−f?)

γT + 2γL(Mζ2+σ2)
n + 2γ2L2υ2.

Alongside, we compare with the non-convex convergence for δ-contraction operators in a distributed
setting. The existing analyses tackle this by using a stronger uniform bounded gradient assumption
[64, 33, 20]. We use weaker Assumption 3 and 4, to establish the convergence analysis.

Theorem 7. (Non-convex convergence of δ-contraction operators) Let Assumptions 1, 2, 3, and
4 hold. Then the iterates, {xt}t≥0 of Algorithm 1 with a δ-compressor and a constant step-size
γ ≤ min{ n

2L(M(C+1)+n) ,
1

2L(2/δ+M)
√
C+1
} follow

1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ 8(f(x0)−f?)

γT + 4γL(Mζ2+σ2)
n + 8γ2L2

δ

((
2
δ +M

)
ζ2 + σ2

)
.

Again, similar to Remarks 6 and 8, for δ-contraction operators, we find the 1/δ2 (heterogeneous
case, ζ 6= 0) vs. 1/δ (homogeneous case, ζ = 0) anomaly, while absolute compressors have υ2

dependence on υ in both homogeneous and heterogeneous cases.
Remark 9. With appropriate choices of step-size, both absolute compressors and δ-contraction
operators with EF-SGD achieve the same O(1/

√
nT ) asymptotic rate of SGD. See Corollary 1 in

§B.3 for the full result.
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Figure 2: Test metric vs. Data volume. For 3 benchmarks, average test quality with std. dev. over 3 runs. The
dashed black line denotes the no compression baseline.
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Figure 3: Convergence of Top-k and Hard-threshold for ResNet-18 on CIFAR-10 at 0.06% average
density: (a) Test-accuracy vs. Iterations, (b) Error-norm vs. Iterations, (c) Density (kt/d) vs. Iterations.
k = 0.06% of d, and λ = 0.0072. Hard-threshold has better convergence than Top-k because of a smaller
total-error.

6 Experiments

Experimental setup. We compare Top-k and hard-threshold sparsifiers on image classification,
language modelling, and recommendation tasks. We use different optimizers: vanilla SGD, SGD
with Nesterov momentum, and ADAM [34]. All experiments were run on an 8-GPU cluster, using
Allgather as the communication primitive. We perform compression in the standard layer-wise
fashion [20, 37, 47] and follow the EF strategy used in [57]. For hyper-parameter configuration,
comparison with entire-model compression, discussion on different EF approaches, experiments
without EF, and experiments with logistic regression, we refer to Appendix C.

Test metric vs. Data volume. We tune the sparsification parameters for both sparsifiers such that
they send similar total data volumes during training. We use average density: 1

T

∑T−1
t=0

kt
d as a

measure of total data volume, where kt denotes the number of elements transmitted in iteration t.
Figure 2 shows the average test quality across three repetitions with different initial random seeds.
We observe that fixing the average density, hard-threshold consistently has better test performance
than Top-k. For ResNet-18 on CIFAR-10, we observe that hard-threshold at an average density of
0.12% almost achieves the baseline accuracy and is better than Top-k at 0.75% density (∼ 6× more
total data volume). For LSTM on Wikitext, at an average density of 0.025%, hard-threshold has
> 2 better perplexity than Top-k. For NCF on Movielens-20M, hard-threshold has > 1% better
Hit-Rate@10 at all considered average densities.

We now demonstrate that hard-threshold has faster convergence because of a smaller total-error in
comparison to Top-k. In Figure 3, we introspect a run with average density of 0.06% from Figure
2a. In Figure 3a, while hard-threshold converges to an accuracy of 93.9%, Top-k achieves 91.1%
accuracy. At the same time, in Figure 3b, we observe large error-accumulation in the initial 1, 200
iterations for Top-k. Consequently, hard-threshold has a significantly lower total-error than Top-k,
and therefore has better convergence. This observation about large error accumulation for Top-k is
consistent across all our benchmarks (see §C.2).

Comparison against ACCORDION. We compare against the state-of-the-art adaptive sparsifier:
ACCORDION [3] on CIFAR-10 and CIFAR-100 datasets. ACCORDION shifts between two user-
defined k values: kmax and kmin, by using Top-kmax when the training is in a critical regime, else
using Top-kmin. We compare against ACCORDION with hard-threshold λ = 1

2
√
kmin

. For complete
experiment details; see §C.4.

We report the CIFAR-10 result in Table 1, while the CIFAR-100 result is reported in §C.4. Each
setting is repeated with 6 different seeds and we report the average. For the CIFAR-10 dataset,
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Table 1: Comparison against ACCORDION [3] on CIFAR-10.

Network Method Accuracy (%) Average Density (%)

ResNet-18

Top-1% (kmax/d) 94.1 1.00 (1×)
Top-0.1% (kmin/d) 93.2 0.10 (10×)
ACCORDION 93.5 0.53 (1.9×)
Hard-threshold ( 1

2
√

kmin

) 94.0 0.13 (7.7×)

GoogleNet

Top-1% (kmax/d) 94.1 1.00 (1×)
Top-0.1% (kmin/d) 92.9 0.10 (10×)
ACCORDION 93.4 0.47 (2.1×)
Hard-threshold ( 1

2
√

kmin

) 94.2 0.13 (7.7×)

SENet18

Top-1% (kmax/d) 94.0 1.00 (1×)
Top-0.1% (kmin/d) 92.5 0.10 (10×)
ACCORDION 93.5 0.47 (2.1×)
Hard-threshold ( 1

2
√

kmin

) 94.2 0.14 (7.1×)

we observe that hard-threshold has 0.5% − 0.8% higher test accuracy than ACCORDION and is
approximately 3.5× more communication efficient than ACCORDION. For the CIFAR-100 dataset,
except the ResNet-18 model, we observe that hard-threshold obtains more than 0.8% higher accuracy
than ACCORDION with more than 1.26× communication savings over ACCORDION.

How to tune the hard-threshold? We use the non-convex convergence results from §5.1.2 to suggest
a hard-threshold value which has better convergence than Top-k with parameter k for non-convex
loss functions (including DNNs). Let M̂ , ζ̂, and σ̂ be the estimates of M , ζ, and σ, respectively, in

Assumptions 3 and 4. We set the threshold as λ ∼ 2√
k

√(
2d
k + M̂

)
ζ̂2 + σ̂2; see discussion in §D.

The λ in Table 1 is derived from simplifying this formula. But how to tune the hard-threshold such
that it achieves no-compression baseline performance with the least total-data transmission remains
an open question. We remark, as of now, this question remains unanswered for Top-k as well.

When and when not to use hard-threshold? In a standard cluster setting with a dedicated network,
the speedup in terms of per-iteration training time due to gradient compression depends on the
characteristics of the DNN being trained [46]. One of the determining characteristics is the extent
to which the communication phase overlaps with computation. If the fraction of non-overlapped
communication is significant, then communication is a bottleneck, even if Top-k compression is
applied. However, in the case of hard-threshold sparsification (configured for the same total commu-
nication volume), during iterations with high data transmission, the non-overlapped communication
remains; but during iterations with low data transmission, non-overlapped communication reduces,
thereby reducing the overall training time. On the other hand, if there is complete overlap between
computation and communication for Top-k, then a hard-threshold with the same total communication
volume may introduce non-overlapped communication in some iterations with high data transmission,
thereby increasing overall training time. Here, we ignored two important aspects of hard-threshold:
(i) Hard-threshold may require fewer iterations to a target accuracy owing to its better statistical
efficiency, and that (ii) hard-threshold has negligible computation overhead in comparison to Top-k.

7 Conclusion

We proposed a total-error perspective to compressed communication that captures the effect of
compression during the entire training process. Under this, we showed that the hard-threshold
sparsifier is more communication-efficient than the state-of-the-art Top-k sparsifier, and is a principled
way to perform adaptive sparsification. Absolute compressors – the class of compressors in which
hard-threshold belongs – have promising convergence in the heterogeneous data settings, which is a
prominent issue in Federated Learning [38]. As the EF framework is also applicable to Local SGD
[52], we hope that this inspires more communication-efficient versions of Local SGD that adaptively
determine when to communicate, rather than naively communicating in fixed intervals. Furthermore,
similar to hard-threshold, we believe adaptive absolute compressor counterparts of quantization
schemes and low-rank methods can also be developed.
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A Notations

In this paper, by [d] we denote the set of d natural numbers {1, 2, · · · , d}. We denote the `2 norm of
a vector x ∈ Rd by ‖x‖, and the `1 and `∞-norms are denoted by ‖x‖1 and ‖x‖∞, respectively. By
0 we denote a vector of all 0s in Rd. In the proofs, we use the notation Et[·] to denote expectation
conditioned on the iterate, xt, that is, E[·|xt].

B Convergence analysis

In this section, we provide the proofs of convex and non-convex convergence results of the absolute
compressors with EF, and compare them with that of the δ-contraction operators, and vanilla SGD.

B.1 Overview of results

In §B.2, we provide the technical lemmas and inequalities necessary for the analyses. In §B.3 we
provide the non-convex convergence results, and §B.4 contains the convex convergence results.

B.2 Technical results

Lemma 4. If a, b ∈ Rd then the Young’s inequality is: For all ρ > 0, we have

‖a+ b‖2 ≤ (1 + ρ)‖a‖2 + (1 + ρ−1)‖b‖2. (10)

Alternatively,
2 〈a, b〉 ≤ ρ‖a‖2 + ρ−1‖b‖2. (11)

Lemma 5. For ai ∈ Rd we have:

‖ 1

n

n∑

i=1

ai‖2 ≤
1

n

n∑

i=1

‖ai‖2. (12)

Lemma 6. [54] Let r0, c ≥ 0, d, T > 0, and 0 < γ ≤ 1
d . Then choosing γ = min( 1

d ,
√

r0
cT ), the

following holds:
r0

γT
+ cγ ≤ dr0

T
+

2
√
cr0√
T

Proof. We consider two cases. If r0
cT ≤ 1

d2 , then choosing the step-size γ =
(
r0
cT

)1/2
, we get

r0

γT
+ cγ ≤ 2

√
cr0√
T

.

Else, if r0
cT > 1

d2 , then choosing γ = 1
d , we get

r0

γT
+ cγ ≤ dr0

T
+
c

d
≤ dr0

T
+

√
cr0√
T
.

Combining both bounds, we get the result.

Lemma 7. Let r0, b ≥ 0, c, d, T > 0, and 0 < γ ≤ 1
d . Then choosing γ = min( 1

d ,
√

r0
cT ), the

following holds:
r0

γT
+ cγ + bγ2 ≤ dr0

T
+

2
√
cr0√
T

+
br0

cT
.
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Proof. The proof follows similar to Lemma 6. We consider two cases. If r0
cT ≤ 1

d2 , then choosing the

step-size γ =
(
r0
cT

)1/2
, we get

r0

γT
+ cγ + bγ2 ≤ 2

√
cr0√
T

+
br0

cT
.

Else, if r0
cT > 1

d2 , then choosing γ = 1
d , we get

r0

γT
+ cγ + bγ2 ≤ dr0

T
+
c

d
+

b

d2
≤ dr0

T
+

√
cr0√
T

+
br0

cT
.

Combining both bounds, we get the result.

Lemma 8. [54] Let r0 ≥ 0, d, T > 0, and 0 < γ ≤ 1
d . Then choosing γ = min( 1

d ,
(
r0
bT

)1/3
), the

following holds:
r0

γT
+ bγ2 ≤ dr0

T
+

2(br0)
2/3

T 2/3
.

Proof. We consider two cases. If r0
bT ≤ 1

d3 , then choosing the step-size γ =
(
r0
bT

)1/3
, we get

r0

γT
+ bγ2 ≤ 2(br0)

2/3

T 2/3
.

Else, if r0
bT > 1

d3 , then choosing γ = 1
d , we get

r0

γT
+ bγ2 ≤ dr0

T
+

b

d2
≤ dr0

T
+

(br0)
2/3

T 2/3
.

Combining both bounds, we get the result.

Lemma 9. For every non-negative sequence {rt}t≥0 and parameters, a > 0, b, c ≥ 0, T ≥ 2,φ ≥ 1,
decreasing step-sizes {γt := 2

a(φ+t)}t≥0, and weights {wt := (φ+ t)}t≥0, satisfy

ΨT :=
1

WT

T∑

t=0

(
wt
γt

(1− aγt)rt −
wt
γt
rt+1 + cγtwt + bγ2

twt

)
≤ 4c

aT
+
aφ2r0

T 2
+

16b ln(T )

a2T 2
,

where WT :=
∑T
t=0 wt.

Proof. This proof is motivated from Lemma 11 in [54]. We observe
wt
γt

(1− aγt)rt =
a

2
(φ+ t)(φ+ t− 2)rt =

a

2
((φ+ t− 1)2 − 1)rt ≤

a

2
(φ+ t− 1)2rt. (13)

By plugging in the definition of γt and wt in Ψt, we find

ΨT

(13)
≤ 1

WT

T∑

t=0

(a
2

(φ+ t− 1)2rt −
a

2
(φ+ t)2rt+1

)
+

T∑

t=0

2c

aWT
+

T∑

t=0

4b

a2(φ+ t)WT

≤ a(φ− 1)2r0

2WT
+

2c(T + 1)

aWT
+

4b

a2WT

T∑

t=0

1

φ+ t
.

By using (φ − 1)2 ≤ φ2, WT =
∑T
t=0(φ + t) ≥ (2φ+T )(T+1)

2 ≥ (T+1)(T+2)
2 , and

∑T
t=0

1
φ+t ≤∑T

t=0
1

1+t ≤ ln(T + 1) + 1, we have

ΨT ≤
aφ2r0

(T + 1)(T + 2)
+

4c

a(T + 2)
+

8b(ln(T + 1) + 1)

a2(T + 1)(T + 2)
.

For T ≥ 2, we have (ln(T+1)+1)
(T+1)(T+2) ≤

2 ln(T )
T 2 . By using this, we get

ΨT ≤
aφ2r0

T 2
+

4c

aT
+

16b ln(T )

a2T 2
.

Hence the result.
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Lemma 10. (Lemma D.2 in [22]) For every non-negative sequence {rt}t≥0 and parameters, d ≥
a > 0, b, c, T ≥ 0, with a bound on the step-size γt ≤ 1

d , there exists a constant step-size,

γt = γ = min{1

d
,

ln(max{2,min{a2r0T
2/c, a3r0T

3/b}})
aT

}

and weights,wt := (1−aγ)−(t+1), such that for all T satisfying ln(max{2,min{a2r0T 2/c,a3r0T
3/b}})

T ≤
1, we have

ΨT := 1
WT

∑T
t=0

(
wt
γt

(1− aγt)rt − wt
γt
rt+1 + cγtwt + bγ2

twt

)
= Õ

(
dr0 exp

[
−adT

]
+ c

aT + b
a2T 2

)
.

Proof. Substituting the values for γt and wt, we get

ΨT =
1

γWT

T∑

t=0

(wt−1rt − wtrt+1) +
cγ

WT

T∑

t=0

wt +
bγ2

WT

T∑

t=0

wt

≤ r0

γWT
+ cγ + bγ2

≤ r0

γ
exp[−aγT ] + cγ + bγ2, (14)

where we use WT ≥ wT ≥ (1− aγ)−T ≥ exp[aγT ] in the last inequality. To tune γ, we consider
following two cases:
• If 1

d ≥
ln(max{2,min{a2r0T 2/c,a3r0T

3/b}})
aT , then we choose γ = ln(max{2,min{a2r0T 2/c,a3r0T

3/b}})
aT

and (14) becomes Õ( c
aT + b

a2T 2 ), as

• If 1
d < ln(max{2,min{a2r0T 2/c,a3r0T

3/b}})
aT , then we choose γ = 1

d and (14) becomes
Õ(dr0 exp

[
−adT

]
+ c

aT + b
a2T 2 ).

Combining both bounds, we get the result.

The recurrence relation in the next lemma is instrumental for perturbed iterate analysis of Algorithm
1 used in both convex and non-convex cases.

Lemma 11. Let ēt = 1
n

∑n
i=1 ei,t, ḡt = 1

n

∑n
i=1 gi,t, and p̄t = 1

n

∑n
i=1 pi,t. Define the sequence

of iterates {x̃t}t≥0 as x̃t = xt − ēt, with x̃0 = x0. Then {x̃t}t≥0 satisfy the recurrence: x̃t+1 =
x̃t − γtḡt.

Proof. We have

x̃t+1 = xt+1 − ēt+1 = xt − (ēt + γtḡt) = x̃t − γtḡt.

Hence the result.

B.3 Non-convex convergence analysis

In this section, we provide the non-convex convergence analyses. Lemma 13 provides a one-step
descent recurrence which leads to Theorem 1 and a key result for proving convergence. Based on
this, in §B.3.1, §B.3.2, §B.3.3 we discuss the convergence of absolute compressors, δ-contraction
operators, and uncompressed SGD, respectively. In §B.3.4 we provide the convergence result
for absolute compressors and δ-contraction operators for an appropriate choice of step-size. The
following lemma bounds the quantity Et‖ 1

n

∑n
i=1 gi,t‖2.

Lemma 12. Let f follow Assumption 4 and the stochastic noise, ξi,t follow Assumption 3. Then we
have

Et‖
1

n

n∑

i=1

gi,t‖2 ≤ (1 +
M(C + 1)

n
)‖∇f(xt)‖2 +

Mζ2 + σ2

n
. (15)
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Proof. Let the stochastic gradient, gi,t computed at ith worker at iteration t follows gi,t = ∇fi(xt) +
ξi,t with E[ξi,t|xt] = 0. Hence, we have

Et‖
1

n

n∑

i=1

gi,t‖2 = Et‖
1

n

n∑

i=1

(∇fi(xt) + ξi,t)‖2

E[ξi,t|xt]=0
= ‖∇f(xt)‖2 + Et‖

1

n

n∑

i=1

ξi,t‖2

E[ξi,t|xt]=0
= ‖∇f(xt)‖2 +

1

n2

n∑

i=1

Et‖ξi,t‖2

By Assumption 3

≤ ‖∇f(xt)‖2 +
1

n2

n∑

i=1

(M‖∇fi(xt)‖2 + σ2)

= ‖∇f(xt)‖2 +
M

n2

n∑

i=1

‖∇fi(xt)−∇f(xt)‖2 +
M‖∇f(xt)‖2

n
+
σ2

n

By Assumption 4

≤ (1 +
M

n
)‖∇f(xt)‖2 +

M

n
(C‖∇f(xt)‖2 + ζ2) +

σ2

n
.

By rearranging the terms we get the result.

The following non-convex descent lemma is the key result used to establish convergence of both
absolute compressors and δ-contraction operators.
Lemma 13. (Non-convex descent lemma) Let Assumptions 1, 3, and 4 hold. If {xt}t≥0 denote the

iterates of Algorithm 1 for a constant step-size, γ ≤ n

2L(M(C + 1) + n)
, then

E[f(x̃t+1)]] ≤ E[f(x̃t)]−
γ

4
E‖∇f(xt)‖2 +

γ2L(Mζ2 + σ2)

2n
+
γL2

2n

n∑

i=1

E‖ei,t‖2. (16)

Proof. By using the L-smoothness of f and taking expectation we have

Et[f(x̃t+1)] ≤ f(x̃t)− 〈∇f(x̃t),Et[x̃t+1 − x̃t]〉+
L

2
Et‖x̃t+1 − x̃t‖2

= f(x̃t)− γ 〈∇f(x̃t),∇f(xt)〉+
γ2L

2
Et‖

1

n

n∑

i=1

gi,t‖2

(15)
≤ f(x̃t)− γ 〈∇f(x̃t),∇f(xt)〉

+
γ2L

2

(
(1 +

M(C + 1)

n
)‖∇f(xt)‖2 +

Mζ2

n
+
σ2

n

)

≤ f(x̃t)− γ‖∇f(xt)‖2 + γ 〈∇f(xt)−∇f(x̃t),∇f(xt)〉

+
γ2L(M(C + 1) + n)

2n
‖∇f(xt)‖2 +

γ2L(Mζ2 + σ2)

2n
(11)
≤ f(x̃t)− (γ − γ

2
− γ2L(M(C + 1) + n)

2n
)‖∇f(xt)‖2 +

γ‖∇f(xt)−∇f(x̃t)‖2
2

+
γ2L(Mζ2 + σ2)

2n
By L−smoothness

and γ≤ n
2L(M(C+1)+n)

≤ f(x̃t)−
γ‖∇f(xt)‖2

4
+
γL2‖xt − x̃t‖2

2
+
γ2L(Mζ2 + σ2)

2n

= f(x̃t)−
γ‖∇f(xt)‖2

4
+
γL2‖ēt‖2

2
+
γ2L(Mζ2 + σ2)

2n
(12)
≤ f(x̃t)−

γ‖∇f(xt)‖2
4

+
γL2 1

n

∑n
i=1‖ei,t‖2
2

+
γ2L(Mζ2 + σ2)

2n
.
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Taking total expectation yields the lemma.

Remark 10. Rearranging the terms in Lemma 13, performing telescopic sum, and noting that ζ = 0
for n = 1, we get the result in Theorem 1.

B.3.1 Absolute compressors

Theorem. 6 (Non-convex convergence of absolute compressors) Let Assumptions 1, 2, 3, and 4
hold. Then the iterates, {xt}t≥0 of Algorithm 1 with an absolute compressor, C and a constant
step-size, γ ≤ n

2L(M(C+1)+n) , follow

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
4(f(x0)− f?)

γT
+

2γL(Mζ2 + σ2)

n
+ 2γ2L2υ2.

Proof. By using Lemma 13, we have

E[f(x̃t+1)] ≤ E[f(x̃t)]−
γE‖∇f(xt)‖2

4
+
γL2 1

n

∑n
i=1 E‖ei,t‖2
2

+
γ2L(Mζ2 + σ2)

2n
Remark 5
≤ E[f(x̃t)]−

γE‖∇f(xt)‖2
4

+
γ3L2υ2

2
+
γ2L(Mζ2 + σ2)

2n
.

By taking summation over the iterates, we get

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
4
∑T−1
t=0 (E[f(x̃t)]− E[f(x̃t+1)])

γT
+

2γL(Mζ2 + σ2)

n
+ 2γ2L2υ2

≤ 4(f(x0)− f?)
γT

+
2γL(Mζ2 + σ2)

n
+ 2γ2L2υ2.

Hence the result.

B.3.2 δ-contraction operators

We now provide an error-bound for δ-contraction operators, which is an extension of the single node
case in [54].

Lemma 14. Let f follow Assumption 4 and the stochastic noise follow Assumptions 3. Define ei,t as
in Algorithm 1. Then by using a δ-compressor, C, with a constant step-size, γ ≤ 1

2L(2/δ+M)
√
C+1

,
we have

T∑

t=0

[
1

n

n∑

i=1

E‖ei,t‖2
]
≤ 1

4L2

T∑

t=0

E‖∇f(xt)‖2 +
2γ2(T + 1)

δ

((
2

δ
+M

)
ζ2 + σ2

)
. (17)

Proof. We note that the compression operator, C and the stochastic noise, ξi,t are independent of
each other. Therefore, by taking expectation on the randomness of the compression operator, C in the
following expression we have

1

n

n∑

i=1

EC‖ei,t+1‖2 =
1

n

n∑

i=1

EC‖ei,t + γgi,t − γC(
ei,t
γ

+ gi,t)‖2

By (7)
≤ 1

n

n∑

i=1

γ2(1− δ)‖ei,t
γ

+ gi,t‖2,

21



which further by taking expectation conditioned on xt becomes

1

n

n∑

i=1

E
(
EC‖ei,t+1‖2|xt

) E[ξi,t|xt]=0

≤ (1− δ)
n

n∑

i=1

‖ei,t + γ∇fi(xt)‖2 +
(1− δ)
n

n∑

i=1

γ2E
[
‖ξi,t‖2|xt

]

Assumption 3

≤ (1− δ)
n

n∑

i=1

‖ei,t + γ∇fi(xt)‖2 +
(1− δ)γ2

n

n∑

i=1

(
M‖∇fi(xt)‖2 + σ2

)

(10)
≤ (1− δ)(1 + ρ)

n

n∑

i=1

‖ei,t‖2 +
(1− δ)(1 + ρ−1 +M)γ2

n

n∑

i=1

‖∇fi(xt)‖2

+(1− δ)γ2σ2

Assumption 4

≤ (1− δ)(1 + ρ)

n

n∑

i=1

‖ei,t‖2 +
(
(1− δ)(1 + ρ−1 +M)γ2(C + 1)

)
‖∇f(xt)‖2

+
(
(1− δ)(1 + ρ−1 +M)γ2ζ2

)
+ (1− δ)γ2σ2

≤ (1− δ)(1 + ρ)

n

n∑

i=1

‖ei,t‖2

+γ2
(
(1 + ρ−1 +M)(C + 1)‖∇f(xt)‖2 + (1 + ρ−1 +M)ζ2 + σ2

)
.

By unrolling the recurrence, taking total expectation, setting ρ = δ
2(1−δ) , such that (1 + ρ−1) =

2−δ
δ ≤ 2

δ and (1− δ)(1 + ρ) ≤ (1− δ
2 ), and using the fact that ei,0 = 0, for all i, we find

1

n

n∑

i=1

E‖ei,t+1‖2 ≤ γ2
t∑

i=0

[(1− δ)(1 + ρ)]t−i
((

2

δ
+M

)
(C + 1)E‖∇f(xi)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

≤ γ2
t∑

i=0

(1− δ

2
)t−i

((
2

δ
+M

)
(C + 1)E‖∇f(xi)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)
.

Finally,

T∑

t=0

[
1

n

n∑

i=1

E‖ei,t‖2
]

= γ2
T∑

t=0

t−1∑

i=0

(1− δ

2
)t−1−i

((
2

δ
+M

)
(C + 1)E‖∇f(xi)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

≤ γ2
T−1∑

t=0

T−t−1∑

j=0

(1− δ

2
)j
((

2

δ
+M

)
(C + 1)E‖∇f(xt)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

≤ γ2
T−1∑

t=0

((
2

δ
+M

)
(C + 1)E‖∇f(xt)‖2 +

(
2

δ
+M

)
ζ2 + σ2

) ∞∑

j=0

(1− δ

2
)j

= γ2
T−1∑

t=0

(
2

δ

)((
2

δ
+M

)
(C + 1)E‖∇f(xt)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

≤ γ2
T∑

t=0

(
2

δ

)((
2

δ
+M

)
(C + 1)E‖∇f(xt)‖2 +

(
2

δ
+M

)
ζ2 + σ2

)

=

T∑

t=0

(
γ2

(
2

δ

)(
2

δ
+M

)
(C + 1)E‖∇f(xt)‖2

)
+

T∑

t=0

2γ2

δ

((
2

δ
+M

)
ζ2 + σ2

)
.

Choosing γ ≤ 1
2L(2/δ+M)

√
C+1

, we get γ2
(

2
δ

) (
2
δ +M

)
≤ 1

4L2(C+1) . Combining all together we
have

T∑

t=0

[
1

n

n∑

i=1

E‖ei,t‖2
]
≤ 1

4L2

T∑

t=0

E‖∇f(xt)‖2 +
2γ2(T + 1)

δ

((
2

δ
+M

)
ζ2 + σ2

)
.

Hence the result.
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By using the previous bound, we now provide the non-convex convergence result for δ-contraction
operators.
Theorem. 7 (Non-convex convergence of δ-contraction operators) Let Assumptions 1, 2, 3, and 4
hold. Then the iterates, {xt}t≥0 of Algorithm 1 with a δ-contraction operator and a constant step-size
γ ≤ min{ n

2L(M(C+1)+n) ,
1

2L(2/δ+M)
√
C+1
} follow

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
8(f(x0)− f?)

γT
+

4γL(Mζ2 + σ2)

n
+

8γ2L2

δ

((
2

δ
+M

)
ζ2 + σ2

)
.

Proof. Summing over the iterates t = 0 to t = T − 1 in (16) of Lemma 13, we have

E[f(x̃T )] ≤ f(x0)−
∑T−1
t=0 γE‖∇f(xt)‖2

4
+
γL2

∑T−1
t=0

1
n

∑n
i=1 E‖ei,t‖2

2
+

T−1∑

t=0

γ2L(Mζ2 + σ2)

2n

(17)
≤ f(x0)− (

γ

4
− γ

8
)

T−1∑

t=0

E‖∇f(xt)‖2 +
γ3L2T

δ

((
2

δ
+M

)
ζ2 + σ2

)
+
γ2TL(Mζ2 + σ2)

2n
.

Rearranging, we get

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
8(f(x0)− E[f(x̃t)])

γT
+

4γL(Mζ2 + σ2)

n
+

8γ2L2

δ

((
2

δ
+M

)
ζ2 + σ2

)

≤ 8(f(x0)− f?)
γT

+
4γL(Mζ2 + σ2)

n
+

8γ2L2

δ

((
2

δ
+M

)
ζ2 + σ2

)
.

Hence the result.

B.3.3 Uncompressed SGD

We provide the convergence result of no-compression SGD (Algorithm 1 with an identity compressor,
i.e., C(x) = x for all x ∈ Rd).
Theorem 8. (Non-convex convergence of SGD) Let Assumptions 1, 2, 3, and 4 hold. Then the
iterates, {xt}t≥0 of Algorithm 1 by using an identity compressor (C(x) = x, for all x ∈ Rd) with a
constant step-size, γ ≤ n

L(M(C+1)+n) follow

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
2(f(x0)− f?)

γT
+
γL(Mζ2 + σ2)

n
.

Proof. We use the L-smoothness of f to find

Et[f(xt+1)] ≤ f(xt)− 〈∇f(xt),Et[xt+1 − xt]〉+
L

2
Et‖xt+1 − xt‖2

= f(xt)− γ 〈∇f(xt),Et[ḡt])〉+
γ2L

2
Et‖ḡt‖2

= f(xt)− γ‖∇f(xt)‖2 +
γ2L

2
Et‖

1

n

n∑

i=1

gi,t‖2

(15)
≤ f(xt)− γ‖∇f(xt)‖2 +

γ2L

2

(
(1 +

M(C + 1)

n
)‖∇f(xt)‖2 +

Mζ2

n
+
σ2

n

)

= f(xt)− γ
(

1− γL(M(C + 1) + n)

2n

)
‖∇f(xt)‖2 +

γ2L(Mζ2 + σ2)

2n
γ≤ n

L(M(C+1)+n)

≤ f(xt)−
γ

2
‖∇f(xt)‖2 +

γ2L(Mζ2 + σ2)

2n
.

By summing over the iterates and taking total expectation, we get

1

T

T−1∑

t=0

E‖∇f(xt)‖2 ≤
2(f(x0)− f?)

γT
+
γL(Mζ2 + σ2)

n
.

Hence the result.
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B.3.4 Final convergence result

From Remark 9, the following corollary describes the O(1/
√
nT ) convergence with an appropriate

step-size for absolute compressors and δ-contraction operators.
Corollary 1. Let Assumptions 1, 2, 3, and 4 hold with Mζ2 + σ2 > 0 and let {xt}t≥0 denote the
iterates of algorithm 1. Then, if
• C is an absolute compressor, we have

1

T

T−1∑

t=0

E‖∇f(xt)‖2 = O
(√

L(Mζ2 + σ2)(f(x0)− f?)√
nT

+
L((Mn (C + 1) + 1) + nυ2

Mζ2+σ2 )(f(x0)− f?)
T

)
.

• C is a δ-contraction operator, we have

1
T

∑T−1
t=0 E‖∇f(xt)‖2 = O



√

(L(Mζ2+σ2))(f(x0)−f?)√
nT

+
L

(
max{Mn (C+1)+1),( 1

δ+M)
√
C+1}+

n((1+Mδ)ζ2+δσ2)
δ2(Mζ2+σ2)

)
(f(x0)−f?)

T


 .

• C is the identity compressor, we have

1

T

T−1∑

t=0

E‖∇f(xt)‖2 = O
(√

L(Mζ2 + σ2)(f(x0)− f?)√
nT

+
L(Mn (C + 1) + 1)(f(x0)− f?)

T

)
.

Proof. Invoking Lemma 7 in Theorem 6 and Theorem 7, and Lemma 6 in Theorem 8 we get the
results.

We note that the above results are for the cases with Mζ2 + σ2 > 0. If Mζ2 + σ2 = 0, i.e. a
non-stochastic setting, then one can derive the convergence result using Lemma 8.

While compression does not affect the slower decaying O(1/
√
nT ) term for both absolute compres-

sors and δ-contraction operators, we observe δ-contraction operators have 1/δ2 dependence in the
O(1/T ) term when ζ 6= 0 (heterogeneous data). Therefore, in this setting, the Top-k sparsifier has
d2/k2 in the numerator of O(1/T ) term. On the other hard, hard-threshold has dλ2 in the numerator
of O(1/T ) term even when ζ 6= 0, and thus has a significantly better dependence on d.

B.4 Convex convergence analysis

In this Section, we provide convergence results for distributed compressed SGD with absolute
compressors and an EF where the loss function on each worker fi is µ-strongly convex with µ ≥ 0
(see Assumption 5). Our analysis is inspired by the proof techniques in [54] which analyzes an EF
SGD with δ-contraction operators in the single node (n = 1) case. [10] extended this analysis to the
distributed (n > 1) case for δ-contraction operators.

We start with the following key result by Nesterov [41] for convex and smooth functions.
Lemma 15. Let fi follow Assumptions 1 and Assumption 5 with µ ≥ 0, then

‖∇fi(y)−∇fi(x)‖2 ≤ 2L(fi(y)− fi(x)− 〈∇fi(x), y − x〉), ∀x, y ∈ Rd. (18)

We start with the convex decent lemma from [10]. For completeness, we also provide the proof.
Lemma 16. (Convex descent lemma) (Lemma 21 in [10]) Let Assumptions 1, 2, 3, and 5 hold. De-
note D := 1

n

∑n
i=1‖∇fi(x?)‖2. If γt ≤ 1

4L(1+2M/n) , for all t ≥ 0, then the iterates, {x̃t}t≥0 of
Algorithm 1 follow

Et‖x̃t+1 − x?‖2 ≤ (1− µγt
2

)‖x̃t − x?‖2 −
γt
2

[f(xt)− f?] + 3Lγt‖xt − x̃t‖2 + (γ2
t )
σ2 + 2MD

n
.

Proof. We have

‖x̃t+1 − x?‖2 Lemma 11
= ‖x̃t − x?‖2 − 2γt 〈ḡt, x̃t − x?〉+ γ2

t ‖ḡt‖2

= ‖x̃t − x?‖2 − 2γt 〈ḡt, xt − x?〉+ γ2
t ‖ḡt‖2 + 2γt 〈ḡt, xt − x̃t〉 .
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Therefore,

Et‖x̃t+1 − x?‖2 = ‖x̃t − x?‖2 − 2γt 〈Et[ḡt], xt − x?〉+ γ2
t Et‖ḡt‖2 + 2γt 〈Et[ḡt], xt − x̃t〉

= ‖x̃t − x?‖2 − 2γt 〈∇f(xt), xt − x?〉+ γ2
t Et‖ḡt‖2 + 2γt 〈∇f(xt), xt − x̃t〉 .

(19)

First, we bound 2 〈∇f(xt), xt − x̃t〉. We use Young’s inequality (11) with ρ = 1
2L and get

2 〈∇f(xt), xt − x̃t〉 ≤ 1

2L
‖∇f(xt)‖2 + 2L‖xt − x̃t‖2

(18),∇f(x?)=0

≤ f(xt)− f(x?) + 2L‖xt − x̃t‖2. (20)

Next, we bound −2 〈∇f(xt), xt − x?〉. We use the µ-strong convexity of f to find

−2 〈∇f(xt), xt − x?〉 ≤ 2(f(x?)− f(xt))− µ‖xt − x?‖2. (21)

However, since we want to work with ‖x̃t − x?‖2 instead of ‖xt − x?‖2, we get rid of ‖xt − x?‖2
using (10) with ρ = 1 as

‖xt − x?‖2 ≥
1

2
‖x̃t − x?‖2 − ‖xt − x̃t‖2.

Substituting this in Equation (21), we get

−2 〈∇f(xt), xt − x?〉 ≤ 2(f(x?)− f(xt))−
µ

2
‖x̃t − x?‖2 + µ‖xt − x̃t‖2. (22)

Finally, we bound Et‖ḡt‖2 as

Et‖
1

n

n∑

i=1

gi,t‖2 = E

[
‖ 1

n

n∑

i=1

(∇fi(xt) + ξi,t)‖2|xt
]

= E

[
‖∇f(xt) +

1

n

n∑

i=1

ξi,t‖2|xt
]

E[ξi,t|xt]=0
= ‖∇f(xt)‖2 + E

[
‖ 1

n

n∑

i=1

ξi,t‖2|xt
]

E[ξi,t|xt]=0
= ‖∇f(xt)‖2 +

1

n2

n∑

i=1

E
[
‖ξi,t‖2|xt

]

Assumption 3

≤ ‖∇f(xt)‖2 +
1

n2

n∑

i=1

(M‖∇fi(xt)‖2 + σ2)

= ‖∇f(xt)‖2 +
M

n2

n∑

i=1

‖∇fi(xt)−∇fi(x?) +∇fi(x?)‖2 +
σ2

n

≤ ‖∇f(xt)‖2 +
2M

n2

n∑

i=1

(
‖∇fi(xt)−∇fi(x?)‖2 + ‖∇fi(x?)‖2

)

+
σ2

n
(18),D= 1

n

∑n
i=1‖∇fi(x

?)‖2

≤ ‖∇f(xt)‖2 +
2M

n2

n∑

i=1

2L[fi(xt)− fi(x?)− 〈∇fi(x?), xt − x?〉]

+
2MD

n
+
σ2

n
(23)

∇f(x?)=0
= ‖∇f(xt)−∇f(x?)‖2 +

4LM

n
(f(xt)− f(x?)) +

2MD + σ2

n
(18),∇f(x?)=0

≤ 2L

(
1 +

2M

n

)
(f(xt)− f(x?)) +

2MD + σ2

n
. (24)
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We now substitute (20), (22), and (24) in (19) to get

Et‖x̃t+1 − x?‖2 = ‖x̃t − x?‖2 − 2γt 〈∇f(xt), xt − x?〉+ γ2
t Et‖ḡt‖2 + 2γt 〈∇f(xt), xt − x̃t〉

≤
(

1− µγt
2

)
‖x̃t − x?‖2 − γt

(
1− γt · 2L

(
1 +

2M

n

))
(f(xt)− f(x?))

+γt(2L+ µ)‖xt − x̃t‖2 + γ2
t

2MD + σ2

n
.

Choosing γt ≤ 1
4L(1+2M/n) gives the desired result.

Next, we give the convex convergence result of distributed EF SGD with absolute compressors.

B.4.1 Absolute compressors

The next theorem combines the results of Theorems 4 and 5 from the main paper. We present them as
a single theorem (Theorem 9) to keep the structure of the proofs simple.
Theorem 9. Let Assumptions 1, 2, 3, and 5 hold. Denote D := 1

n

∑n
i=1‖∇fi(x?)‖2, and R0 =

‖x0 − x?‖2. Then the iterates, {xt}t≥0 of Algorithm 1 with an absolute compressor, Cυ have the
following convergence rates if Assumption 5 is satisfied with the following choices of the parameters:

i) (Theorem 4) If µ > 0, a constant step-size {γt = γ}t≥0, with γ ≤ 1
4L(1+2M/n) is chosen as in

Lemma 10 and weights {wt = (1− µγ/2)−(t+1)}t≥0 then

E[f(x̄T )]− f? = Õ
(
L(1 +M/n)R0 exp

[
− µT

8L(1 + 2M/n)

]
+
σ2 +MD

µnT
+

Lυ2

µ2T 2

)
.

ii) (Theorem 5) If µ = 0, a constant step-size {γt = γ}t≥0, with γ ≤ 1
4L(1+2M/n) is chosen as in

Lemma 7 and weights {wt = 1}t≥0 then

E[f(x̄T )]− f? = O



√

(σ2 +MD)R0√
nT

+

(
nLυ2

σ2+MD + L(1 +M/n)
)
R0

T


 .

iii) If µ > 0, step-sizes {γt = 4
µ(φ+t)}t≥0, and weights {wt = φ + t}t≥0, respectively with

φ = 16L
µ (1 + 2M

n ) then

E[f(x̄T )]− f? = O
(
σ2 +MD

µnT
+
µL2(1 +M/n)2R0 + Lυ2 ln(T )

µ2T 2

)
.

In the above, x̄T = 1
WT

∑T
t=0 wtxt, and WT =

∑T
t=0 wt.

Proof. By using Lemma 11 in Lemma 16, and taking total-expectation over all the previous iterates,
we have

E‖x̃t+1 − x?‖2 ≤ (1− µγt
2

)E‖x̃t − x?‖2 −
γt
2
E[f(xt)− f?] + 3LγtE‖ēt‖2 + γ2

t (
σ2 + 2MD

n
)

(12)
≤ (1− µγt

2
)E‖x̃t − x?‖2 −

γt
2
E[f(xt)− f?] + 3Lγt

n∑

i=1

1

n
E‖ei,t‖2 (25)

+γ2
t (
σ2 + 2MD

n
) (26)

Remark 5
≤ (1− µγt

2
)E‖x̃t − x?‖2 −

γt
2
E[f(xt)− f?] + 3Lγ3

t υ
2 + γ2

t (
σ2 + 2MD

n
).

Rearranging, we get

E[f(xt)]−f? ≤
2

γt
(1− µγt

2
)E‖x̃t−x?‖2−

2

γt
E‖x̃t+1−x?‖2 +γt

2σ2 + 4MD

n
+6Lγ2

t υ
2. (27)
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With rt = 2E‖x̃t−x?‖2, a = µ
2 , c = 2σ2+4MD

n , b = 6Lυ2, we can see the RHS as 1
γt

(1−aγt)rt−
1
γt
rt+1 + cγt + bγ2

t . Thus, we use Lemma 10 and Lemma 9 to get the first and the third result

respectively. Note that to get the LHS, we use the convexity of f as 1
WT

∑T
t=0 wtf(xt) ≥ f(x̄T ).

Finally, to get the second result, we substitute µ = 0 in Equation (27) and perform telescopic sum to
get ∑T

t=0 E[f(xt)]

T + 1
− f? ≤ 2‖x0 − x?‖2

γ(T + 1)
+

2σ2 + 4MD

n
γ + 6Lυ2γ2.

We now use Lemma 7 and convexity of f to arrive at the desired result. Similarly, for the result of
Remark 7, we use Lemma 8.

B.4.2 δ-contraction operators

The rates for δ-contraction operators is based on [22], except we consider a slightly different set of
assumptions. Below we provide the sketch of the proof.

First, using equation (18), we can have

1

n

n∑

i=1

‖∇fi(xt)‖2 =
1

n

n∑

i=1

‖∇fi(xt)‖2

=
1

n

n∑

i=1

‖∇fi(xt)−∇fi(x?) +∇fi(x?)‖2

≤ 2

n

n∑

i=1

‖∇fi(xt)−∇fi(x?)‖2 +
2

n

n∑

i=1

‖∇fi(x?)‖2

(18)
≤ 4L(f(xt)− f?) + 2D. (28)

Second, from Assumption 3, we have

1

n

n∑

i=1

E[‖ξi,t‖2 | xt] ≤
M

n

n∑

i=1

‖∇fi(xt)‖2 + σ2

(28)
≤ 4LM(f(xt)− f?) + 2MD + σ2. (29)

Third, from (24), we have

E

[
‖ 1

n

n∑

i=1

gi,t‖2|xt
]
≤ 2L

(
1 +

2M

n

)
(f(xt)− f(x?)) +

2MD + σ2

n
. (30)

Using (28), (29), and (30), we can show that Assumption 3.3 in [22] is satisfied with A = 2L,D1 =

2D, Ã = 2LM , D̃1 = 2MD + σ2, A′ = L(1 + 2M
n ), D′1 = 2MD+σ2

n , ρ1 = ρ2 = 1, and all the
other quantities as zero. Then, using Lemma G.1 in [22] with γ ≤ δ

8L
√

3(2+Mδ)
, we can show that

Assumption 3.4 in [22] is satisfied with F1 = 0, F2 = 0, and D3 = 6Lγ
δ2

(
D(4 + 2Mδ) + δσ2

)
. We

subsequently use (25), followed by Lemma 10 for the strongly-convex case (Remark 6), and Lemma
7 for the convex case (Remark 8).

B.5 Comparison against unbiased compressors

Till now, we have discussed the convergence of compressed SGD using EF. However, unbiased
relative compressors which satisfy (i) EC [C(x)] = x; and (ii) EC‖C(x) − x‖2 ≤ Ω‖x‖2 do not
require EF. We compare the convergence of such unbiased compressors and absolute compressors
with EF. With the notations above, [29] provide the following convergence result for unbiased
compressors in the strongly convex case:

E[f(x̄T )]−f?+µE[‖xT−x∗‖2] ≤ 64ΩnL(1+M/n)R0 exp
[
− µT

4ΩnL(1+M/n)

]
+36 (Ωn−1)D+Ωσ2/n

µT ,
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Table 2: Summary of the benchmarks used

Model Task Dataset No. of Parameters Optimizer
ResNet-18 [26] Image classification CIFAR-10 [35] 11,173,962 SGD+Nesterov momentum

LSTM [28] Language modelling Wikitext-2 [39] 28,949,319 Vanilla SGD
NCF [27] Recommendation Movielens-20M 31,832,577 ADAM [34]

where Ωn = Ω−1
n + 1. Comparing with Theorem 4, we find unbiased compressors have compression

affecting the slower-decaying 1
T term. Although, we note that their convergence is in both the iterates

and functional values, whereas ours is only in functional values.

C Addendum to numerical experiments

Overview. In this section, we provide:

i) The experimental settings and implementation details of our DNN experiments (§C.1).

ii) Further discussion on the large error-accumulation of Top-k and its effect on total-error (§C.2).

iii) Logistic regression experiments (§C.3).

iv) Comparison against the state-of-the-art adaptive sparsifier ACCORDION [3]. (§C.4)

v) Experiment with Entire-model Top-k (§C.5).

vi) Experiments without EF, and discussion on different forms of EF (§C.6).

C.1 Experimental settings and implementation details

We implement the sparsifiers in PyTorch. For each method, a gradient reducer class is defined, which
invokes the appropriate compression function and then perform the aggregation among the workers.
Tables 2, 3, 4, and 5 provide the experimental details for each of the tasks. We used the default
hyper-parameters provided in the mentioned repositories for each task.

Table 3: Image classification task

Dataset CIFAR-10
Architecture ResNet-18
Repository PowerSGD [57]

See https://github.com/epfml/powersgd
License MIT

Number of workers 8
Global Batch-size 256 × 8

Optimizer SGD with Nesterov Momentum
Momentum 0.9

Post warmup LR 0.1 × 16
LR-decay /10 at epoch 150 and 250

LR-warmup Linearly within 5 epochs, starting from 0.1
Number of Epochs 300

Weight decay 10−4

Repetitions 3, with different seeds
Hard-threshold: λ values {1.2× 10−2, 7.2× 10−3, 5× 10−3, 3× 10−3, 1.8× 10−3}

Top-k: k values {0.03%, 0.06%, 0.12%, 0.3%, 0.75%}

C.2 Top-k suffers from large error accumulation

In Figure 4, we show the cascading effect (mentioned in §4.5) for the experiment in Figure 1. We
observe that the error norm profile in Figure4 c closely follows the error compensated gradient norm
profile in Figure4 b.
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Table 4: Language modelling task

Dataset WikiText2
Architecture LSTM
Repository PowerSGD [57]

See https://github.com/epfml/powersgd
License MIT

Number of workers 8
Global Batch-size 128 × 8

Optimizer vanilla SGD
Post warmup LR 1.25 × 16

LR-decay /10 at epoch 60 and 80
LR-warmup Linearly within 5 epochs, starting from 1.25

Number of Epochs 90
Weight decay 0
Repetitions 3, with different seeds

Hard-threshold: λ values {4.5× 10−3, 2.75× 10−3, 1.6× 10−3, 1.12× 10−3}
Top-k: k values {0.025%, 0.05%, 0.1%, 0.2%}

Table 5: Recommendation task

Dataset Movielens-20M
Architecture NCF
Repository NVIDIA Deep Learning Examples

See https://github.com/NVIDIA/DeepLearningExamples
Number of workers 8
Global Batch-size 220

Optimizer ADAM
ADAM β1 0.25
ADAM β2 0.5
ADAM LR 4.5× 10−3

Number of Epochs 30
Weight decay 0

Dropout 0.5
Repetitions 3, with different seeds

Hard-threshold: λ values {2× 10−6, 1.3× 10−6, 1× 10−6, 4× 10−7}
Top-k: k values {7.7%, 9.5%, 11.3%, 13.7%}

License Open Source

In Figure 5 and Figure 6, we show that hard-threshold has a better convergence because of a smaller
total-error in LSTM-WikiText2 and NCF-Ml-20m benchmarks. We note that we use the ADAM
optimizer on the NCF-Ml-20m benchmark, and therefore our total-error insight is not theoretically
justified in this case. Nevertheless, our experiment empirically confirms that the total-error perspective
is useful for optimizers beyond vanilla SGD and momentum SGD.

C.3 Logistic regression experiments

For the convex experiments, we consider the following `2 regularized logistic regression experiment
considered in [22]4:

min
x∈Rd

f(x) =
1

N

N∑

i=1

log(1 + exp(−yiA[i, :]x)) +
µ

2
‖x‖2, where A ∈ RN×d, y ∈ RN . (31)

The function, f(x) in (31) is µ-strongly convex and L-smooth with L = µ+ λmax(ATA)
4N . As in [22],

we use the step-size γ = 1/L, and µ = 10−4 λmax(ATA)
4N . We use standard LIBSVM datasets [14],

4Open source code: https://github.com/eduardgorbunov/ef_sigma_k
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(a) (b) (c)

Figure 4: Convergence of Top-k and Hard-threshold for a logistic regression model on gisette LIBSVM
dataset with 20 workers: (a) Functional suboptimality vs. bits communicated; (b) Error-compensated gradient
norm vs. Epoch; (c) Error-norm vs. iterations. Top-k has large error-accumulation due to the cascading-effect.
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Figure 5: Convergence of Top-k and Hard-threshold for an LSTM on WikiText2 at 0.05% average
density: (a) Test-perplexity vs. Iterations, (b) Error-norm vs. Iterations, (c) Density (kt/d) vs. Iterations.
k = 0.05% of d, and λ = 0.0072. Hard-threshold has better convergence than Top-k because of a smaller
total-error.
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Figure 6: Convergence of Top-k and Hard-threshold for NCF on ML-20m at 7.7% average density:
(a) Best Hit-rate@10 vs. Epochs, (b) Error-norm vs. Epochs, (c) Density (kt/d) vs. Epochs. k = 0.06% of d,
and λ = 0.0072. Hard-threshold has better convergence than Top-k because of a smaller total-error.

and split the dataset into number of worker partitions. For distributed EF-SGD, we use a local batch
size of 1 at each node, where the new batch is chosen uniformly at random at each step.

Tuning the hard-threshold: Our goal is to make f(xT )− f(x?) ≤ ε, for a given precision, ε > 0.
We set λ such that dγ2λ2 = ε, i.e., λ =

√
ε

d
√
γ .

Justification: Remark 5 states that by using a hard-threshold λ > 0, the noise due to compression is
dγ2λ2. Due to this compression noise, we expect (although we did not prove) that xT will oscillate in
a dγ2λ2 neighborhood of the optimum, x?, i.e. ‖xT−x?‖2 ≤ dγ2λ2. Furthermore, by L-smoothness,
we have

f(xT )− f(x?) ≤ L

2
‖xT − x?‖2.

Therefore, if we want to converge to a ε-close functional-suboptimality value, f(xT )− f(x?), then
ensuring dγ2λ2 ≤ ε guarantees ‖xT − x?‖2 ≤ ε, and implies, f(xT )− f(x?) ≤ L

2 ε. The above is
an upper bound, and we observe in our experiments by using λ =

√
ε

d
√
γ , gives f(xt)− f(x?) ≤ ε.

C.3.1 Extreme sparsification

In Figure 7, we perform extreme sparsification to train a logistic regression model on the madelon
LIBSVM dataset. We compare Top-k with k = 1, and hard-threshold with λ = 14881 set via
dγ2λ2 = 1.25 × 10−4, so that they both communicate same data volume. In Figure 7b, we see
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that Hard-threshold sparsifier does not communicate any elements in many iterations. Despite this,
hard-threshold has faster convergence than Top-k in Figure 7 a. Figure 7 c demonstrates that this is
because hard-threshold has a smaller total-error than Top-k.

(a) (b) (c)

Figure 7: Convergence of Top-k and Hard-threshold for a logistic regression model on madelon LIBSVM
dataset with 20 workers: (a) Functional suboptimality vs. bits communicated; (b) parameters communicated vs.
iterations; (c) error norm vs. iterations. Hard-threshold has a faster convergence than Top-k even when it does
not communicate any parameter in some iterations.

C.3.2 Convergence to an arbitrary neighborhood of the optimum

For the experiments in this section, the uncompressed baseline is distributed gradient descent (GD).
Unlike SGD, GD has linear convergence to the exact optimum. However, Distributed EF-GD does
not converge to the exact optimum due to compression noise. To remedy this, Gorbunov et al. [22]
introduced a family of variance-reduced compression algorithms that have linear convergence to the
exact optimum. We consider algorithm EF-GDstar from [22] (known as EC-GDstar in [22]).

We empirically show that EF-GDstar with hard-threshold compressor, can converge to an arbitrarily
small neighborhood around the optimum, for an appropriate choice of hard-threshold. Figure 8 and
Figure 9 demonstrate the convergence of EF-GDstar using Hard-threshold and Top-k sparsifiers with
20 workers and 100 workers, respectively. We choose (i) k = 1 for 20 workers and k = 5 for 100
workers, respectively; (ii) λ = 2.98, such that dγ2λ2 = 5× 10−12. By using this λ, the compression
error for hard-threshold is less than 5 × 10−12 in Figures 8 c and 9 c. Moreover, hard-threshold
converges to f(xT )− f(x?) ≤ 5× 10−12 in both Figures 8 b and 9 b. Additionally, hard-threshold
sends 1.7× and 8× less data than Top-k in Figure 8 a and Figure 9 a, respectively. Furthermore,
Figure 8 is an extreme sparsification scenario where hard-threshold communicates < 1 parameter per
iteration per worker.

(a) (b) (c)

Figure 8: Convergence of EF-GDstar using Top-k and Hard-threshold sparsifiers on a logistic regression
model on madelon LIBSVM dataset with 20 workers: (a) Functional suboptimality vs. bits communicated; (b)
functional suboptimality vs. epochs; (c) error-norm vs. epochs.

Our results demonstrate that it is possible to use the hard-threshold compressor to converge to an
arbitrarily small neighborhood around the optimum. We leave the convergence analyses, and devising
practical variants for future research.

C.4 Comparison against ACCORDION

The experiment details are provided in 6, and the CIFAR-100 results are provided in Table 7.
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(a) (b) (c)

Figure 9: Convergence of EF-GDstar using Top-k and Hard-threshold sparsifiers on a logistic regression
model on madelon LIBSVM dataset with 100 workers: (a) Functional suboptimality vs. bits communicated; (b)
functional suboptimality vs. epochs; (c) error norm vs. epochs.

Table 6: ACCORDION experiments

Dataset CIFAR-10 and CIFAR-100
Architectures ResNet-18 [26], SENet18 [30], GoogleNet [56]
Repository PowerSGD [57]

See https://github.com/epfml/powersgd
License MIT

Number of workers 8
Global Batch-size 256 × 8

Optimizer SGD with Nesterov Momentum
Momentum 0.9

Post warmup LR 0.1 × 16
LR-decay /10 at epoch 150 and 250

LR-warmup Linearly within 5 epochs, starting from 0.1
Number of Epochs 300

Weight decay 10−4

Repetitions 6, with different seeds
Accordion: kmin value 0.1% for both CIFAR-10 and CIFAR-100
Accordion: kmax value 1% for CIFAR-10 and 2% for CIFAR-100

Hard-threshold: λ values
(Calculated using λ = 1

2
√
kmin

) ResNet-18-CIFAR-10: 4.73× 10−3

ResNet-18-CIFAR-100: 4.72× 10−3

GoogleNet-CIFAR-10: 6.37× 10−3

GoogleNet-CIFAR-100: 6.32× 10−3

SENet18-CIFAR-10: 4.68× 10−3

SENet18-CIFAR-100: 4.68× 10−3

Table 7: Comparison against ACCORDION [3] on CIFAR-100

Network Method Accuracy (%) Average Density (%)

ResNet-18

Top-2% (kmax/d) 71.8 2.00 (1×)
Top-0.1% (kmin/d) 70.6 0.10 (20×)
ACCORDION 71.6 0.57 (3.5×)
Hard-threshold ( 1

2
√
kmin

) 71.4 0.35 (5.7×)

GoogleNet

Top-2% (kmax/d) 75.5 2.00 (1×)
Top-0.1% (kmin/d) 73.1 0.10 (20×)
ACCORDION 74.2 0.48 (4.2×)
Hard-threshold ( 1

2
√
kmin

) 75.0 0.38 (5.3×)

SENet18

Top-2% (kmax/d) 71.9 2.00 (1×)
Top-0.1% (kmin/d) 70.1 0.10 (20×)
ACCORDION 71.0 0.55 (3.6×)
Hard-threshold ( 1

2
√
kmin

) 72.1 0.36 (5.6×)
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Figure 10: ResNet-18 on CIFAR-10

Figure 11: Test metric vs. Data volume for entire-model compression. The dashed black line in each plot
denotes the no compression baseline. Each setting is repeated with three seeds, and we plot the average with
standard deviation. For description on parameters, see Tables 3, 4, and 5.

C.5 Entire-model sparsification

Sparsification can be performed in two ways: layer-wise or entire-model. In layer-wise sparsification,
the sparsifier is invoked individually on each tensor resulting from each layer. In contrast, in entire-
model sparsification, the sparsifier is applied to a single concatenated tensor resulting from all layers.
Since hard-threshold is an element-wise sparsifier, layer-wise and entire-model sparsification result in
the same sparsified vector. However, it is expected that layer-wise and entire model vary substantially
for Top-k. Layer-wise Top-k is used in all practical implementations [47, 37, 62] because performing
entire-model Top-k is both compute and memory intensive.

While we employ layer-wise Top-k in our experiments, we present in Figure 11 the test metric
vs. data volume experiment for ResNet-18-CIFAR-10 benchmark (Figure 2a) using entire-model
Top-k. We find that hard-threshold is more communication-efficient than entire-model Top-k as well.
Notably, at an average density ratio of 0.003%, hard-threshold has more than 4% higher accuracy
than entire-model Top-k.

C.6 Error-Feedback (EF)

In this section, we discuss various aspects of EF (or memory). Particularly, in §C.6.1 we investigate
if hard-threshold is more communication-efficient than Top-k without EF. Then, in Section C.6.2, we
discuss and compare the different ways to perform EF in the literature.

C.6.1 Convergence without EF

To understand how the sparsifiers perform without the EF, we conduct experiments without EF
for ResNet-18 benchmark. We report this in Figure 12. Similar to the with EF case, we find that
hard-threshold has better convergence than Top-k. We note that with EF, hard-threshold achieved
baseline performance at an extreme average density of 0.12%. However, without EF, hard-threshold
fails to achieve baseline performance (94.2%) even at a significantly higher average density of 5%.
Hence, EF is a necessary tool to ensure faster convergence.

C.6.2 Different types of EF

For optimizers other than vanilla SGD, one can compress and aggregate quantities other than
stochastic gradients (such as momentum). Consider an example for SGD with Nesterov momentum,
where the compression and aggregation can be performed in the following two ways:
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Figure 12: Top-k and hard-threshold without error compensation for ResNet-18 on CIFAR-10: (a) Ac-
curacy vs. Iterations, (b) density, (kt/d) vs. iterations. Average density is 5% for Top-k and 4.7% for
hard-threshold.

Algorithm 2: Distributed EF SGD with mo-
mentum by using gradient compression
for worker w = 1, ..,W in parallel do

for iteration t = 1, 2, · · · , do
Compute local stochastic gradient gw
∆w ← gw + ew
C(∆w)← COMPRESS(∆w)
ew ← ∆w − DECOMPRESS(∆w)
C(∆)←
AGGREGATE(C(∆1), . . . , C(∆W ))

∆
′
← DECOMPRESS(C(∆))

m← λm+ ∆
′

x← x− γ(∆
′

+m)

Algorithm 3: Distributed EF SGD with mo-
mentum by using update compression
for worker w = 1, ..,W in parallel do

for iteration t = 1, 2, · · · , do
Compute local stochastic gradient gw
mw ← λmw + gw
uw ← mw + gw
∆w ← uw + ew
C(∆w)← COMPRESS(∆w)
ew ← ∆w − DECOMPRESS(∆w)
C(∆)←
AGGREGATE(C(∆1), . . . , C(∆W ))

∆
′
← DECOMPRESS(C(∆))

x← x− γ(∆
′
)
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Figure 13: Test Accuracy for gradient compression vs. update compression for Top-k on ResNet-18
on CIFAR-10. We experiment with three different seeds, and the plot represents the run with highest
final accuracy for each setting. The test accuracy statistics (µ ± σ) are: Gradient compression
(92.96± 0.39%) and update compression (90.78± 2.03%).
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• Gradient compression. This was proposed in [57] and is depicted in Algorithm 2. In the
case of SGD with Nesterov momentum, this update rule ensures that every worker maintains
the same momentum state. However, the updates to momentum is sparse, as the momentum
is calculated using sparsified gradients.

• Update compression. This was proposed in [37], and is depicted in Algorithm 3. In the
case of SGD with Nesterov momentum, every worker maintains a different momentum state
calculated from their local stochastic gradients. Although updates to the momentum state is
dense in this case, the momentum state is completely unaware of the compression and does
not reflect the actual history of the updates. In order to circumvent this issue, Lin et. al. [37]
had proposed momentum factor-masking to clear old local momentum states of a parameter
once the parameter is updated. However, it is not easy to devise such modifications for
optimizers which maintain multiple states derived from complicated calculations, such as
RMSProp and ADAM.

Nomenclature for Algorithm 2 and 3. In Algorithm 2 and 3 we show the distributed training loop.
We denote the learning rate by γ, momentum factor by λ, the model parameters by x ∈ Rd, the
momentum at worker w by mw, and the error at worker w by ew. At the beginning of the training,
mw and ew are initialized to zero for all workers. By COMPRESS, DECOMPRESS, and AGGREGATE we
denote the compression, decompression, and aggregate function, respectively.

We also conduct experiments for Top-k on ResNet-18 benchmark by using aforementioned update
rules and find that gradient compression (Algorithm 2) results in better performance (see Figure 13). In
light of the above discussion and experimental evidence, we stick to gradient compression (Algorithm
2) for our main experiments.

D How to tune the hard-threshold?

Substituting υ2 = dλ2 for hard-threshold in Theorem 6 we get

1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ 4(f(x0)−f?)

γT + 2γL(Mζ2+σ2)
n + 2γ2L2dλ2. (32)

Similarly, substituting δ = k
d for Top-k in Theorem 7 we get

1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ 8(f(x0)−f?)

γT + 4γL(Mζ2+σ2)
n + 8γ2L2d

k

((
2d
k +M

)
ζ2 + σ2

)
. (33)

We ignore the first two terms unaffected by compression in (32) and (33), and focus on the last term.
To ensure that hard-threshold has better convergence than Top-k we have

2L2dλ2 ≤ 8L2d
k

((
2d
k +M

)
ζ2 + σ2

)
,

that is,
λ ≤ 2√

k

√(
2d
k +M

)
ζ2 + σ2.

Therefore, if M̂ , ζ̂, and σ̂ are estimates of M , ζ, and σ, respectively, then we suggest setting the
threshold as

λ ∼ 2√
k

√(
2d

k
+ M̂

)
ζ̂2 + σ̂2.

In our comparison against ACCORDION, we assume ζ̂ = 0 (homogeneous distributed data), and
σ̂ ∼ 1

4 . This leads us to the hard-threshold value

λ ∼ 1

2
√
k
.

We find that λ = 1
2
√
kmin

has better performance (with similar total-data volume) than Top-kmin in
Tables 1 and 7.
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