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ABSTRACT
A crucial concern regarding cloud computing is the confidentiality
of sensitive data being processed in the cloud. Trusted Execution
Environments (TEEs), such as Intel Software Guard eXtensions
(SGX), allow applications to run securely on an untrusted platform.
However, using TEEs alone for stream processing is not enough
to ensure privacy as network communication patterns may leak
information about the data.

This paper introduces two techniques – anycast and multicast –
for mitigating leakage at inter-stage communications in streaming
applications according to a user-selected mitigation level. These
techniques aim to achieve network data obliviousness, i.e., commu-
nication patterns should not depend on the data. We implement
these techniques in an SGX-based stream processing system. We
evaluate the latency and throughput overheads, and the data obliv-
iousness using three benchmark applications. The results show
that anycast scales better with input load and mitigation level, and
provides better data obliviousness than multicast.
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1 INTRODUCTION
Cloud computing provides a cost-effective and flexible means of
executing large-scale computations to extract timely insights from
streaming data. However, running stream computations in the cloud
requires that the cloud tenants trust the cloud provider with both
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their code and their data, which exposes them to a range of privacy
concerns. These concerns include the possibility that a malicious
administrator or an intruder may gain privileged access to system
software (such as the OS or the hypervisor) in order to leak or
manipulate confidential data or to tamper with the tenants’ com-
putations to produce incorrect results. Therefore, cloud tenants
want to protect the confidentiality and integrity of their data by
preventing it from being accessed by unauthorized parties.

Fortunately, Trusted Execution Environments (TEEs) allow to
harden the security of cloud applications.Moreover, TEEs are poised
to become widely available in cloud environments. For example,
Intel Software Guard eXtensions (SGX) is a TEE that was released
by Intel with the Skylake CPU series and is now being adopted
in subsequent generations of Intel processors. SGX introduces the
notion of a secure enclave, defined as an execution environment
with a processor-protected memory region that shields both the
application code and the data from access by other software, includ-
ing higher-privileged software. Although SGX provides additional
security, side-channel attacks can still be used to extract informa-
tion about the data being processed by the enclaves [12, 13, 16, 18].
Therefore, simply “enclaving” applications is not sufficient to guar-
antee data security and privacy.

Prior studies have attempted to protect SGX-based big data anal-
ysis frameworks from side-channel attacks [12, 18]. While the pro-
posed techniques for protecting against memory side channels are
also applicable to stream processing systems, the techniques for
protecting against network side channels are not. For example,
Ohrimenko et al. [12] suggested avoiding network side-channel
leakage by shuffling the batched data offline and using sampling
to extract the dataset characteristics. However, neither of these
techniques are feasible when processing streaming data in or near
real-time, which is the focus of our work.

In distributed stream processing systems, network communica-
tion patterns directly reflect the structure of the streaming applica-
tions. These applications typically consist of multiple processing
stages organized into a Directed Acyclic Graph (DAG) that runs
on a collection of networked machines. In general, each stage is
partitioned into multiple nodes that are executed in parallel. Each
node performs local computations on the input streams from its
inedges, and produces output streams to its outedges. By observing
network-level communication between the different stages of the
DAG, an adversary may be able to extract information about the
data being processed by the application. To understand why this
happens, we consider how messages are routed among the nodes of
a distributed streaming application. Several stateful computations
(e.g., aggregation or join operations) require that all the messages
that are logically related must be processed at the same node. The
common scenario that we consider is when messages are key-value

https://doi.org/10.1145/3210284.3210286
https://doi.org/10.1145/3210284.3210286
https://doi.org/10.1145/3210284.3210286


DEBS ’18, June 25–29, 2018, Hamilton, New Zealand M. Bilal et al.

tuples. Then, key-based grouping is used to consistently route all
tuples with the same key to the same node (typically based on a
hash of the key). Thus, key-based grouping implies that the net-
work traffic among nodes (i.e., the routed tuples) is data dependent.
And so, in the presence of data skew, attacks based on frequency
analysis can reveal information about the data even when those
data are encrypted.

A straw man approach to avoiding data-dependent network
communication patterns is broadcast, i.e., each node sends every
tuple it produces to all nodes of the next stage. Broadcast leads
to a completely uniform traffic pattern across nodes of the same
processing stage. However, broadcast increases the computational
and network resource requirements superlinearly with the num-
ber of nodes. While computational resources can be easily (albeit
expensively) scaled in the cloud, network resources are not pro-
visioned on-demand in typical cloud environments. Additionally,
even when sufficient computational and network resources are
available, broadcast may be unnecessary when the workload is not
highly skewed.

Here, we investigate techniques for mitigating information leak-
age via network side channels in stream processing systems. Based
on the above observations, we aim to provide data obliviousness
for network communication patterns without incurring the high
overheads of broadcast. We propose two simple yet effective tech-
niques: multicast and anycast. Compared to broadcast, multicast
reduces the set of next-stage nodes that are candidates for receiv-
ing duplicate tuples. Anycast, on the other hand, outputs just a
single tuple to one node chosen from a set of candidate next-stage
nodes. This efficiency gain comes at the expense of increased la-
tency, since we must introduce a subsequent aggregation stage to
ensure application correctness in stateful computations.

We implement these techniques in a home-built stream process-
ing framework. This framework allows the user to select what
mitigation technique to use and the amount of tolerable leakage,
as evaluated according to a user-chosen security property (e.g., an
entropy metric should be below a threshold). The framework ob-
serves the application at runtime and reports whether the security
property is satisfied at the current workload. Lastly, our framework
adapts dynamically by changing the mitigation level when the
skew of the input workload changes, ensuring that the user-defined
security property is satisfied.

Our evaluation shows that anycast achieves higher throughput
than multicast and broadcast with the same number of resources,
and scales well to higher mitigation levels without adding signif-
icant overhead. Multicast and broadcast require more resources
to provide the same latency and throughput as key-based group-
ing. The results also show that it is both feasible and effective to
adapt the mitigation level for anycast at runtime to ensure that the
security property is satisfied despite changes in workload skew.

Our work contributes (i ) mitigation techniques that can be used
to avoid network side-channel leakage, (ii ) the implementation of
a stream processing framework using SGX with integrated side-
channel mitigation techniques, (iii ) an evaluation of each technique
in both real and simulated scenarios for different applications, mul-
tiple metrics, and workloads, and (iv ) mechanisms for performing
adaptive mitigation-level selection.

We use SGX as the example TEE in our system prototype, but
our techniques are equally applicable to frameworks built with
other TEEs. The mitigation techniques can also be applied to any
non-TEE setting where the user does not trust the network. TEE
simply provides additional protection for data against direct attacks
on the compute nodes.

2 PRELIMINARIES
2.1 Background on Stream Computations
Stream processing systems are distributed systems designed to
perform computations on a potentially infinite stream of data, in
real-time or near real-time. Each data element is called a tuple.
Generally, a streaming computation is a pipeline of stages that
operates on streaming data arranged into a DAG. We refer to an
application DAG as a topology. The nodes represent continuous and
often stateful computations in a stage, while the edges represent the
downstream flow of tuples from one node to another. Each stage is
comprised of multiple nodes that operate in parallel. Nodes execute
as threads on a collection of server machines. There are different
types of stages in the DAG. Spouts are source stages that ingest
data, generate tuples, and introduce the tuples into the streaming
application. Bolts are intermediate processing stages that have one
or more input streams and one or more output streams. Lastly,
Sinks, as their name suggests, are processing stages that serve as
exits from the streaming application. Two of the most common
communication patterns among stages are shuffle/randomized and
key-based grouping. In the shuffle pattern, tuples are routed to a
random node of the next stage. In the key-based grouping pattern,
tuples are routed based on keys, such that tuples with the same key
are always routed to the same node.

2.2 Background on Intel SGX
SGX allows systems to execute code and process data in enclaves.
Since enclaves are hardware-protected regions, they remain pro-
tected even when higher-privileged components, such as the BIOS,
hypervisor, OS, or drivers, are compromised. Thus, an adversary
can gain control over the machine, but the enclaves will remain
protected.

To securely deploy applications, developers can build an enclave
and take a measurement, i.e., a secure hash of the initialized enclave.
This measurement is used to confirm the integrity of the enclave
during a local or remote attestation, which is a procedure that
proves to users that they are in communication with the expected
enclave.

SGX applications are typically comprised of both trusted and un-
trusted code. The trusted code includes everything that is executed
within the SGX enclaves; the rest of the application constitutes the
untrusted code. The untrusted code is unable to access data within
the enclaves, and the enclaves cannot issue system calls; they dele-
gate this task to the untrusted code. Enclaves communicate with
the untrusted code through function calls named OCalls, while the
reverse communication uses ECalls.

2.3 Assumptions and Threat Model
We expect users of a secure stream processing system to trust their
own code. This generally assumes that the code is bug-free and does
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not expose private data or secrets. We trust SGX and its associated
components, such as remote attestation. We assume that network
communication is encrypted.

We assume that the adversary is not necessarily just curious, but
also malicious. The adversary may have control of the software and
hardware stack, including the OS, hypervisor, BIOS, device drivers,
and the network. If the adversary has full control over the software
and hardware stack, then side-channel attacks exploiting network
communication patterns are possible. A powerful adversary may
have control over many machines in the data center and would
be able to launch coordinated attacks against the system. Such an
adversary could collect and analyze network traffic.

In addition to the technical ability of the adversary, the adversary
might have previous knowledge about the application, the type
of workload expected to run, and other public information. Even
when the actual workload is not available to the adversary, they
may combine general statistics with any other information that can
be obtained, particularly network patterns, to get a better idea of
the actual workload.

We focus on information leakage due to network communication
patterns. Other side-channel, denial of service, and physical attacks
on the cloud environment are out of scope.

2.4 Stream Processing and Data Obliviousness
When a stream processing system routes tuples based on the shuf-
fle pattern, it is random and data independent. However, traffic
patterns between stages that use key-based grouping, which is a
data-dependent routing scheme, can leak information. Previous
research has described several attacks resulting from this leakage.
For instance, Ohrimenko et al. [12] described attacks on MapRe-
duce jobs, and how communication patterns were exploited to infer
information about the workload. Unfortunately, the risk-mitigation
techniques proposed for MapReduce do not apply to stream pro-
cessing systems. This is because in MapReduce, data is processed
offline, which allows shuffling or randomly sampling of the entire
dataset to observe its characteristics. In stream processing, we deal
with online data streams.

As we already discussed, the straw man approach is to broad-
cast tuples to all nodes of a downstream stage. This method is
inefficient because of its resource requirements. We illustrate the
inefficiency of broadcast with an example. We simulate the number
of tuples that broadcast would generate in comparison to key-based
grouping. The details of the applications under consideration are
given in Section 3.3. Figure 1 shows that broadcast can increase
the number of tuples up to a factor of n, where n is the number
of parallel nodes (threads) of the downstream stage that receive
tuples routed as per key-based grouping. In the case of the tumbling
count topology, if we change the communication pattern between
splitter and count stages from key-based grouping to broadcast for
a parallelism level of 64, we experience about 43 times more tuples.
This means that for large deployments, broadcast can drastically
increase traffic and, thus, overload the network. Additionally, any
downstream processing node must process duplicate tuples so that
an adversary cannot distinguish between the original and dupli-
cate tuples generated by broadcast just by looking at the traffic
going to downstream stages. Generating and processing duplicate

Figure 1: Increased traffic from broadcast.

tuples also consumes additional computational resources. Scaling
the computational resources, in fact, leads to even more duplicate
tuples.

Broadcast is especially inefficient in situations that have low
workload skew; in those situations, a milder mitigation technique
could provide the same benefits as broadcast with fewer resources.
Therefore, there is a need for techniques other than broadcast that
can be used in place of key-based grouping to mitigate network
side-channel leakage. We now turn our attention to techniques that
are more efficient in terms of resources and performance.

3 NETWORK DATA OBLIVIOUSNESS
We aim to provide data obliviousness for network communication
patterns. Data obliviousness, in this context, means that the net-
work communication patterns are not dependent on the data being
processed. Since key-based grouping routes tuples based on their
keys, this leads to data-dependent network communication, which
may leak information. We introduce mitigation techniques that ob-
fuscate the communication patterns and, thus, decrease the amount
of information that an adversary can extract by performing traffic
analysis on a distributed streaming application. Based on the idea
behind broadcast, we present two techniques that are more resource
efficient: multicast and anycast.

While broadcast produces a fully uniform communication pat-
tern (i.e., is data oblivious by definition), other techniques only
approximate network data obliviousness from a communication
pattern perspective. On the other hand, we posit that different
users have different requirements for network data obliviousness.
In particular, full uniformity may not be necessary to avoid infor-
mation leakage. Therefore, we introduce several metrics to quantify
network data obliviousness according to information-theory princi-
ples. These metrics are by no means exhaustive and should be seen
as proof-of-concept. We envision that the user is able to specify,
based on domain knowledge, certain security properties about the
network traffic that must hold at runtime. Automatically determin-
ing these security properties based on attack scenarios is left as
future work. Further, the user is free to customize the obliviousness
metrics, as they can easily be integrated into our framework.

In the following, we introduce the multicast and anycast mitiga-
tion techniques, and present our proof-of-concept metrics. Then,
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we describe the applications and workloads used throughout the pa-
per. Finally, we evaluate the effectiveness of multicast and anycast
according to our metrics.

3.1 Mitigation Techniques
We first introduce some notation. Since mitigation techniques apply
to inter-stage communication, w.l.o.g., we consider a pair of two
consecutive stages: current stage and next stage. We let C and N
be the set of nodes of the current and next stages, respectively.
The number of nodes in each stage is called the parallelism level.
Tuples flow from the nodes in C to the nodes in N according to
key-based grouping. In other words, the topology contains an edge
from every node in C to every node in N . We let xk ∈ N denote
the node receiving tuples with key k , and succ(x , i ) denote the
ith successor of node x in a circular space of a stage’s nodes.1
For a given key k , we define the candidate set Xk of size n as
Xk = [xk , succ(xk , 1), . . . , succ(xk ,n − 1)]. Key-based grouping is
also denoted by kbg.

We are now ready to introduce the techniques.
Multicast: In contrast to broadcast, which sends an output tuple to
every node of the next stage, multicast only sends one output tuple
for each node contained in the candidate set Xk ⊂ N of the down-
stream nodes. Thus, multicast generates n = |Xk | < |N | tuples. The
tuples received by all nodes in Xk \ xk are redundant. Only node
xk accounts for the tuple’s contribution toward the computation.
However, as we will discuss, the nodes that receive extra tuples
must also process them to avoid side-channel leakage via timing.
Extra tuples are tracked as they propagate throughout the DAG,
but their effects toward the computation (e.g., state changes for
stateful computations) are ignored. Multicast might expose some
data-dependent information through communication patterns, but
it consumes fewer resources than broadcast. Intuitively, as n in-
creases, the level of network data obliviousness and the required
resources also increase. Thus, the user can select a suitable trade-off
by changing the value of n.
Anycast: Similarly to multicast, anycast uses the candidate set
Xk ⊂ N of the downstream nodes. However, anycast sends a single
output tuple to just one of the n nodes of Xk .2 Therefore, unlike
broadcast andmulticast, no extra tuples are generated; thus, anycast
generally requires fewer resources. However, tuples with the same
key are partitioned across different nodes. This implies that, in
general, any stateful computation will be incorrect because the
next-stage nodes only receive a subset of the same-key tuples.

To ensure correctness, anycast requires an additional stage, which
is placed after the next stage. The role of the additional stage is to
“merge” the tuples arriving from nodes of the candidate set. The
tuples are routed between the next stage and the additional stage
according to key-based grouping. With the additional stage, the
computation of the original next stage is effectively split into two
stages. In our framework, splitting the computation is responsibility
of the user; doing the split automatically is an interesting avenue
for future work.

1A node’s successor may be selected using the node with the next index (circularly) or
using a different hash function of the tuple’s key, without replacement.
2In our implementation, the sending node selects the next-stage node that has received
the least tuples from that sending node, but other strategies are possible.

Onemaywonder how anycast improves data obliviousness, since
it sends a single tuple (as key-based grouping) and requires an addi-
tional stage, which further increases latency. The answer is two-fold.
First, the next stage performs partial aggregation before sending
tuples onward to the additional stage. This reduces the load on
the additional stage. Second, given that the load is smaller, the ad-
ditional stage can use a lower parallelism level, which increases
obfuscation for the communication pattern of the key-based group-
ing between the next and additional stages. Anycast provides an
obfuscation level between that of broadcast and key-based grouping,
while using fewer resources than broadcast and multicast.

Throughout this paper, we will use the mitigation level as a way
to indicate the value of n for multicast and anycast. Increasing the
mitigation level corresponds to an increased value of n and vice
versa.

3.2 Obliviousness Metrics
To achieve network data obliviousness, we could require that an
adversary observing network traffic would be unable to distinguish
between any two different data streams being processed by an
application. However, we think that this definition of security is too
strict for the many cases where user requirements are more specific
and may not need “complete obliviousness.” Therefore, we define
several metrics for quantifying obliviousness that the user can use
according to their requirements. Later, we use all of the proposed
metrics to evaluate the feasibility of each mitigation technique
under different obliviousness requirements.

It is important to note that here we consider the difficult scenario
where we assume that the n most popular keys are mapped to
n distinct nodes of a stage. Under this assumption, a frequency
analysis attack would yield the most accurate results.

We now review the proposed metrics and then formally define
them. The metrics are (i ) Entropy, (ii ) Adversarial disadvantage,
and (iii ) n-Hamming distance. Entropy measures the overall unifor-
mity of the distribution of tuples across different nodes of a stage.
Adversarial disadvantage provides the accuracy of the attacker’s
guesses under certain assumptions. The n-Hamming distance is an
intuitive metric that reflects the level of obfuscation for the top n
keys.

Each metric concentrates on different aspects of obliviousness.
We defer to the user of our framework to use domain knowledge
when defining the security properties. It is possible to combine
different metrics to address different leakage concerns. For example,
different mitigation techniques could have the same n-Hamming
distance, but different entropies. In that case, the user may elect
to combine the entropy metric with the n-Hamming distance by
using entropy to break ties or vice versa.
Entropy: We let tx be the number of tuples received by node
x ∈ N . Then, we calculate the entropy S as:

S = −
∑
x

tx∑
y ty

log
(

tx∑
y ty

)
∀x ,y ∈ N

If the distribution of tuples across the nodes in N is uniform,
then the entropy is maximized and given as:

S = − log
( 1
N

)
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Entropy values lower than this maximum would mean less uni-
formity and data obliviousness.
Adversarial disadvantage: We consider an adversary who is
trying to guess what tuples are associated with the top n keys.
Adversarial disadvantage AD is defined as the likelihood that the
adversary’s guess will be incorrect under a given mitigation tech-
nique relative to the probability of a correct guess when observing
key-based grouping communication patterns. We calculate it as a
ratio ofG , the number of correct guesses whenmitigation is applied,
over the key-based grouping baseline, Gkbд :

AD = 1 −G/Gkbд

We assume that the adversary performs frequency analysis by
monitoring the tuple distribution across nodes, and then guessing
which node handles which key(s). For example, we consider three
keys, k1, k2, and k3, and three nodes, each dedicated to a key. The
adversary might already know that the frequency of these keys is
k1 > k2 > k3. In this case, the attacker would rank each node x by
the number of received tuple tx , and guess that the node with most
tuples processed k1, and so on.
n-Hamming Distance: Here, we consider an adversary who is
trying to guess which nodes are associated with the topn keys.With
a skewed key distribution and key-based grouping, it is relatively
easy to detect the most popular keys. The n-Hamming distance
nHD reflects “how far off” the tuple distribution is across nodes
when mitigation is applied compared to the tuple distribution of
key-based grouping. We let r be a vector of size |N | consisting of all
nodes x ∈ N , which are sorted in decreasing order according to the
received tuple count tx ; that is, tr 1 ≥ tr 2 ≥ . . . ≥ tr |N | , where r

i is
the ith element of r . We let rkbд be a similarly derived vector for
tx that is observed over the key-based grouping baseline. Then, the
n-Hamming distance metric is calculated as the number of different
elements of the vectors [r1, . . . , rn] and [r1kbд , . . . , r

n
kbд] compared

element-wise:

nHD =
n∑
i=1

di ; di =



1 if r i , r ikbд
0 otherwise

We also use a special case of the n-Hamming distance, the 1-
Hamming distance, which reflects whether the attacker can cor-
rectly guess the node that is handling the most popular key.

3.3 Applications
We present three applications for our evaluation, and we emphasize
where data obliviousness might be desirable for these applications.
The application topologies are shown in Figures 2, 3, and 4. The
edges show the type of tuple routing in use. Anycast routing re-
quires an additional stage in the topology to perform computation
correctly. However, this is not the case for broadcast or multicast
because the extra tuples generated by these techniques are tackled
within the same DAG; therefore, the correctness of the computation
is not impacted.

3.3.1 Tumbling count. This application receives entire sentences
as input and counts the occurrence of each word of the sentence
in a tumbling window with a specific duration. The topology is
shown in Figure 2. An adversary can gain information by observing

Spout Splitter Count

kbg/broad 
/multi

………

shuffle

(a) For kbg, broadcast and multicast.

Spout Splitter
Partial  

Aggregator Count

shuffle anycast kbg

… … … …

(b) For anycast.

Figure 2: DAG of Tumbling count topology.

Spout Filter Local Top-k

shuffle kbg/broad 
/multi

shuffle

Top-k
… … … …

(a) For kbg, broadcast, and multicast.

Spout Filter
Partial  

Aggregator Local Top-k

shuffle anycast kbg shuffle

Top-k

… … … … …
(b) For anycast.

Figure 3: DAG of NYC taxi topology.

traffic between the splitter stage and the count stage, since the tuple
distribution across the different nodes of the count stage can be
skewed. A mitigation technique can be applied between the splitter
and count stages. In the case of anycast, a partial aggregator stage is
introduced, which uses a window to accumulate partial aggregates
before sending them to the count stage. In this case, the mitigation
is applied between the splitter and the partial aggregator stage.

3.3.2 NYC taxi. This application is inspired by taxi data pro-
vided by the City of New York and was introduced in [17]. The
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Spout
Moving  
Average Spike

shufflekbg/broad/
multi

………

(a) For kbg, broadcast, and multicast.

Spout
Moving  
Average Final MA Spike

kbg shuffleanycast

… … … …

(b) For anycast.

Figure 4: DAG of Spike detection topology.

topology is shown in Figure 3. The task of this application is to
calculate the k most popular taxi routes in a rolling window. The
filter stage extracts the latitude and longitude values for both the
origin and destination of a taxi trip from a list of comma-separated
values. The filter stage sends this information to the count stage (or
the partial aggregator stage, in the case of anycast) to calculate the
number of trips that have the same origin and destination locations.
Thus, the key for the key-based grouping (after the filter stage)
is the tuple’s origin-destination pair. The local top-k bolt gener-
ates the local k most frequent origin-destination pairs after each
one-second window, and the top-k bolt combines the local top-k
trips to calculate the global top-k most frequent origin-destination
pairs for the taxi trips. Since the key-based grouping happens be-
tween the filter and local top-k stages, the mitigation techniques
can be applied between these stages. Again, anycast introduces a
partial aggregator stage. Similar to the tumbling count application,
the partial aggregator stage uses a window to accumulate partial
aggregates.

3.3.3 Spike detection. This application is based on a benchmark
for Apache Storm [2]. The topology is shown in Figure 4. The appli-
cation performs anomaly detection on a data stream coming from
sensors. It maintains a moving average of data from each sensor.
The application detects and reports any moving average that in-
creases beyond a specific threshold. In this application, key-based
grouping happens between the spout and the moving average bolt.
Therefore, this is also where the mitigation techniques are applied.
In the case of anycast, the additional stage is the final Moving Av-
erage (MA) stage, which corrects the results by computing a single
moving average based on the partial moving averages reported by
nodes during the moving average stage.

Figure 5: Data leakage results.

This application differs from the previous two applications in
that there is no windowing and each stage has a one-to-one map-
ping between the input tuple and the output tuple. Thus, while
the application uses key-based grouping between the spout and
the moving average stage, each input tuple generates the current
moving average as an output tuple. This implies that anycast does
not make use of partial aggregates and its obfuscation depends on
a lower parallelism level during the final MA stage.
Workloads: The tumbling count application uses text from an
English book as the default workload. The NYC taxi application
uses taxi data [1] as the input workload. Lastly, the spike detection
application uses a sensor dataset from the original benchmark [2].
We also generate synthetic workloads with Zipf distributions so
that we can present results using a dataset with a configurable
skew.

3.4 Results
We evaluate how effective the mitigation techniques are at pro-
viding data obliviousness according to the metrics defined in Sec-
tion 3.2. For this evaluation, we perform simulations using the same
application logic and the same workloads as in our performance
evaluation since tuple routing decisions can be faithfully simulated
without errors.

We report results using the tumbling count application and a
workload generated using a Zipf distribution parameterized with
a skew value α ranging from 1.2 to 2. The parallelism level for
the next stage (where mitigation is applied) is 14. Therefore, the
maximum n-Hamming distance is 14. We consider multicast and
anycast withmitigation leveln ∈ [2, 3, 4], labeled multi-n and any-n,
respectively.

Figure 5 shows the results as we vary α . We use both key-based
grouping and broadcast as baselines. We normalize entropy and
adversarial disadvantage to the broadcast values. We observe in-
teresting consequences of using different obliviousness metrics.
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Broadcast provides the maximum entropy, as expected. Anycast
provides better entropy than multicast for corresponding values of
n. Naturally, increasing n in both anycast and multicast improves
the entropy. As the workload becomes more skewed, the entropy
values for anycast and multicast drop because the mitigation tech-
niques provide increasingly less uniform distributions of the tuples
across different nodes. Therefore, we note that the mitigation level
necessary to achieve a particular entropy goal depends on the skew
in the workload. For example, with α = 1.4, any-4 provides an
entropy comparable to that of broadcast, but for a higher skew, a
higher value of n is required to provide comparable entropy.

We observe that a technique suitable for achieving one oblivious-
ness metric may not be appropriate for another metric. For example,
for α = 1.2, any-3 provides comparable entropy to broadcast, but
the adversarial disadvantage is significantly smaller for any-3 than
for broadcast. Thus, the suitable mitigation technique depends on
not only the skew, but also the chosen metric.

Overall, anycast provides better data obliviousness for entropy
and adversarial disadvantage than multicast with the same value of
n. For the n-Hamming distance, all techniques perform fairly well
compared to key-based grouping, achieving a distance value of 10
or more (out of 14).

Lastly, we also evaluate the 1-Hamming distance, which indicates
whether the adversary can correctly guess the node handling the
most popular key. The results show that only key-based grouping
and any-2 expose this information.

4 STREAM PROCESSINGWITH SGX
We designed and implemented an SGX-based distributed stream
processing system. It integrates the network obliviousness tech-
niques discussed in the previous sections and offers a framework
for the user to select the appropriate mitigation level for a given
obliviousness metric.

4.1 Design
The main question when designing an SGX-based system is what
functionality should execute inside the enclave, and what function-
ality should not be a part of the Trusted Computing Base (TCB)
and instead run as untrusted code. We execute the streaming ap-
plication logic inside the enclave. To transparently handle the en-
cryption/decryption, key management, and attestation procedures,
we place these functions inside the enclave. As we elaborate be-
low, the system must produce routing decisions within the en-
clave; otherwise, important information about the data could be
leaked [12]. Other services and components, such as networking,
serialization/deserialization, and fault tolerance, do not execute in
the enclave. All network communication is encrypted.
Usage: Our system provides an API to create three different types
of components (Spouts, Bolts and Sinks) and an API to abstractly
define the application topology. The user uses the API to write
their own implementation of the application logic. The system
instantiates each component inside the enclave.

Therefore, to use the system, the user needs to (i ) write applica-
tion functions that operate on each tuple and, if required, maintain
state; (ii ) create a driver that specifies functions to be instantiated

within the enclave by each component; and (iii ) specify the appli-
cation topology, i.e., a DAG of the components, the parallelism level
of each component, the type of tuple routing between the stages,
and what mitigation technique and level are to be used.
Tuple routing: To correctly realize key-based grouping and the
mitigation techniques, tuples are routed based on their keys. How-
ever, only the code running within the enclave can access the tuples
in clear text. There are two approaches to supporting tuple rout-
ing. The first approach, also discussed in prior work [12, 15], is to
encrypt the key and the value parts of each tuple separately. This
allows routing decisions to be made based on the encrypted keys
outside of the enclave. However, this method leaks information
about the key distribution unless other obliviousness techniques
are introduced [12]. The second approach is to make routing deci-
sions inside the enclave so that the key distribution is not exposed to
adversaries. This decreases the scenarios in which an attacker will
be able to execute a frequency analysis attack. We adopt the second
approach, as it provides better security and leaks no information
regarding the key distribution from the encrypted data.

4.2 Implementation
Our system is implemented as a distributed stream processing li-
brary written in C/C++ using the Intel SGX SDK. We implement
the applications discussed in Section 3.3 using the library. The li-
brary uses ZeroMQ for distributed messaging, and MsgPack for
the message serialization/deserialization protocol. The scheduling
algorithm in our system is similar to Apache Storm’s default sched-
uler, which assigns the nodes so that they are spread uniformly
across machines. For example, a stage with a parallelism level of 8
deployed on four machines will run two nodes per machine. The
mitigation techniques are implemented as routing mechanisms that
execute inside the enclave. We highlight a few implementation
details.
Multicast: The candidate set includes a node xk , selected by key-
based grouping, and n − 1 additional nodes that succeed xk in the
circular space of the stage’s nodes. Multicast sends n output tuples.
A valid tuple is sent to node xk and other nodes receive duplicate
tuples. The application logic can check the validity of a tuple using
the API. The network I/O is randomized to avoid easily determining
the valid tuple (e.g., guessing the first). A flag in the tuple denotes
whether it duplicate. We use AES GCM encryption with Initial-
ization Vector (IV) so that all the tuples have different encrypted
representations and, thus, the adversary cannot distinguish which
tuples are duplicates just by looking at the encrypted data.

One challenge that arises with duplicate tuples is that if the nodes
receiving them do not process these tuples at all, then an adversary
can use a timing attack to identify the duplicate tuples by observing
when a tuple enters an enclave and when it leaves. Therefore, each
duplicate tuple must go through the same computation as a valid
tuple; however, no state is updated as a result of the computation
for duplicate tuples. Thus, the timing differences between valid
and duplicate tuples are kept to a minimum. In addition, duplicate
tuples must also generate output tuples to avoid being exposed by
the downstream traffic.
Anycast: The candidate set is the same as above. However, instead
of sending tuples to all of the n nodes, anycast only sends one tuple
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to a node chosen from the candidate set. Specifically, the sending
node tracks howmany tuples it sends to each downstream node and
selects the downstream node that has received the least. This form
of load balancing is purely local to the sending node and applies to
all the downstream nodes (not just those in the candidate set for a
given key k). This results in a more uniform tuple distribution.

5 PERFORMANCE EVALUATION
We focus on evaluating the median latency and throughput that
the applications exhibit when using different mitigation techniques.
Throughput is measured based on the number of tuples that have
been processed by the last stage in both the spike detection and tum-
bling count applications. In the NYC taxi application, the through-
put is measured at the local top-k stage. This is to uniformly report
the throughput of the input tuples. The latency measurements are
end-to-end median latencies calculated as the sum of the median
latencies for each stage. The stage latency is calculated as the differ-
ence between the time at which a tuple is emitted from the upstream
stage and the time at which a corresponding output tuple is emitted
from the downstream stage.

To enable a fair comparison, the latency and throughput experi-
ments maintain the same amount of resources for all the techniques.
Resources are assigned to different stages so as to ensure that the
topology does not become saturated in the key-based grouping
baseline. The parallelism level that we use for different stages in
each of the topologies is shown in Table 1. The same number of
total threads are also used for each mitigation technique. For any-
cast, the number of threads originally assigned to the next stage
with key-based grouping is split between the next stage and the
additional stage. For example, the 11 threads of the count stage in
the tumbling count application are split between the partial aggre-
gator and count stages, as shown in Table 1. We vary the load of the
system by increasing the number of spouts. Increasing the number
of spouts by two times roughly doubles the input load.

We evaluate each mitigation technique in terms of its effects on
latency and throughput compared to the key-based grouping base-
line. The combined overheads in terms of performance and resource
consumption allow a user to decide the best technique for their
application. Performance results are presented for key-based group-
ing, broadcast, multi-2, multi-3, any-2, and any-3. Multiple versions
of anycast and multicast (with mitigation level n ∈ [2, 3]) are used
to illustrate how the mitigation level influences performance.

5.1 Setup
We use a four-machine setup, each with an Intel Xeon E3-1240v5
processor (4C/8T) and 32GB of DDR4 memory. We run Precision
Time Protocol (PTP) to synchronize the clocks of the machines for
latency measurements. All of the experiments are executed for 100s,
and the per-tuple latency from the first 50s is discarded to allow
the system to reach a steady state.

5.2 Latency Overheads
Figure 6 shows the median per-tuple latency for each applica-
tion. The plots for tumbling count (Figure 6a) and spike detec-
tion(Figure 6c) use a log-based y-axis. The end-to-end latency for
key-based grouping serves as the baseline.

Tumbling count: As soon as the number of spouts is increased
beyond one, the broadcast latency drastically increases. This is
because the system only has the capacity to process all the duplicate
tuples generated with broadcast when one spout is used. Once the
number of spouts increases, the system is already overloaded. For
the usedmitigation levels, multicast performs similarly to key-based
grouping until the number of spouts increases beyond four. After
that point, the system becomes overloaded by the duplicate tuples,
and the end-to-end latency increases drastically. Throughout the
experiments, anycast maintains the same latency (roughly 100 ms).
This is due to the partial aggregation stage, which uses a tumbling
aggregation window of 100 ms. After each window, the partial
aggregates are sent to a count stage where the final counts are
calculated. Any-2 and any-3 perform very similarly. In summary,
anycast is the only feasible mitigation technique for more than four
spouts given the available resources.
NYC taxi: Multicast outperforms anycast in this experiment.
This is because the system is able to handle the additional load
due to duplicate tuples at the selected parallelism level. Moreover,
multi-3 provides a latency comparable to that of any-2. Broadcast
is infeasible beyond eight spouts.
Spike detection: Anycast outperforms both multicast variants
beyond eight spouts. Unlike the tumbling count application, there
is no need for a window to calculate partial aggregates in this
application and, therefore, there is no extra latency overhead.

Throughout the experiments, the latency appears to saturate
while using a specific mitigation technique when the system is
overloaded. However, the plots only present the end-to-end latency
measurements, which include tuples that have been processed at
the sinks. Due to the short duration of the experiments, this hides
the in-flight tuples that experience increased queuing times. So, in
practice, the median latency grows exponentially after the system
is overloaded, as expected.

There are two main causes of latency overheads with broadcast
and multicast techniques: (i ) the extra latency in the current stage
due to the time it takes to generate duplicate tuples and to perform
the networking I/O sending them to the next stage, and (ii ) the
time required to process duplicate tuples in the downstream stages.
As the number of duplicate tuples grows linearly in n, the latency
grows quickly, and the system quickly approaches saturation. On
the other hand, the main source of latency overheads in anycast is
the delay added by the partial aggregation stage, which contributes
a static increase in the latency. However, as we show later, there
are a few more causes of latency overheads.

5.3 Throughput Overheads
Figure 7 shows the throughput for each application, corresponding
to the experiments shown in Figure 6.
Tumbling count: All the mitigation techniques except broadcast
achieve comparable throughput. For broadcast, the throughput
saturates beyond two spouts. As the load increases, the throughput
of anycast drops about 25% below that of key-based grouping. Multi-
2 has a higher throughput than the anycast variants. At the highest
load, any-2 has a slightly higher throughput than multi-3.
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Table 1: Parallelism configurations for different applications.

Application Parallelism
Splitter Partial Aggregator Count

Tumbling count 8 - 11
Tumbling count (anycast) 8 8 3

Filter Partial Aggregator Local Top-k Top-k
NYC taxi 12 - 6 1
NYC taxi (anycast) 12 4 2 1

Moving Average Final MA Spike
Spike detection 16 - 4
Spike detection (anycast) 8 8 4

(a) Tumbling count. (b) NYC taxi. (c) Spike detection.

Figure 6: Median per-tuple latency across applications.

(a) Tumbling count. (b) NYC taxi. (c) Spike detection.

Figure 7: Throughput across applications.

NYC taxi: All the mitigation techniques except broadcast perform
similarly to key-based grouping. For broadcast, the throughput
saturates beyond eight spouts.
Spike detection: Only any-2 and any-3 maintain a throughput
sufficiently close to key-based grouping. The throughputs of multi-
2, multi-3, and broadcast saturate at four, eight, and twelve spouts,
respectively. The results for multi-2 and multi-3 show that both
the throughput and the latency increase sharply (Figure 6c). This
is counterintuitive, as the latency should spike once the system
saturates the throughput. For example, we consider multi-2 with
eight spouts. We find that the system is able to accommodate the
extra load going from four to eight spouts, but that the load increase

already puts the system beyond capacity at the spike bolt. Thus, the
latency increases significantly. At twelve spouts, the load increases
by 50%, clearly overloading the system.

In summary, while the aggregation stage for anycast adds extra
latency, anycast’s throughput is comparable to key-based grouping.
Anycast also scales well as the input load changes compared to
multicast and broadcast. We observe that anycast also appears to
scale well as n increases from 2 to 3. Next, we investigate whether
this behavior holds for higher values of n.
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Figure 8: Latency of anycast when varying mitigation level and
workload skew.

5.4 Impact of Mitigation Level
With multicast, the overall load on the system clearly increases
linearly with the mitigation level n. However, this is not necessarily
true for anycast, since it does not introduce duplicate tuples. We
now show how increasing the mitigation level with anycast affects
the latency by varying n from 2 to |N | = 8 (the parallelism level of
the next stage).
Effects of workload skew: Figure 8 shows the median per-tuple
latency in the tumbling count application when executing three
different Zipfianworkloadswith skews of 1.2, 1.6, and 2.0. For highly
skewed workloads, we observe that the latency remains stable as
we increase n. However, with a low skew (1.2), the latency increases
by 17% when n increases from 2 to 8. This is due to the behavior
of the partial aggregation stage. With lower skew, in any given
window of partial aggregates, there are many more distinct keys;
therefore, the number of tuples sent from the partial aggregation
stage to the count stage at the end of each window is significantly
higher than when the workload is more skewed. For example, with
a skew of 1.2, there are a total of roughly 19,000 distinct keys in a
100,000-tuple window. With a skew of 2.0, there are only about 500
distinct keys. Thus, with high skew, the keys with lower frequencies
become more rare and partial aggregation is more efficient, which
reduces the latency overhead.
Effects ofmitigation level across applications: Figure 9 shows
the impact of changing the mitigation level on the median latency
for anycast, while using the default workloads for each application.
We see that, unlike multicast, anycast accommodates changes in
n without incurring a drastic increase in the end-to-end latency.
The decrease in the latency as the mitigation level increases can
be attributed to the improved load balancing as a result of the
increasingly uniform tuple distribution.

In addition to the latency overheads caused by the partial aggre-
gation stage, there are two other factors that contribute to the la-
tency when we vary n. First, decreasing skew leads to more unique
keys in the partial aggregation window and, thus, more tuples
per-window. Second, the value of n affects how partial aggregates
associated with each key are distributed. A larger n means that
more nodes will have more tuples to send at the end of each partial

aggregation window, increasing the overall processing time. Addi-
tionally, the downstream nodes will have to process more partial
aggregates per tuple and per window as n increases.

6 ADAPTIVE MITIGATION
Since anycast scales well with the mitigation level, it is a good
candidate for adaptive mitigation at runtime. Figure 5 shows that
the mitigation level needed to achieve a particular obliviousness
depends on the data skew. Because the skew of the streaming data is
likely to change over time, an adaptive mechanism ensures that the
system dynamically changes the mitigation level to maintain the
security property of interest (e.g., a certain obliviousness metric)
above a chosen threshold. In this section, we discuss one such mech-
anism that we implement in our system and evaluate its behavior
as the data skew varies over time.

6.1 Mechanism
We design a simple adaptive mechanism that changes the mitigation
level as the data skew in the workload changes. The mitigation level
is adapted one step at a time.

Each of the current stage nodes locally records two tuple count
distributions. First, each node tracks the number of tuples that it
has sent to each of the next stage nodes. Second, each node also
records a virtual tuple-count distribution to the next stage nodes
as if the mitigation level were the current level minus one. Each
node shares these distributions every δ time units with a single
controller; δ = 100ms in our implementation. Then, the controller
aggregates these local distributions into a global view.

The controller evaluates the security properties from the global
view. Our framework provides simple built-in properties and ac-
cepts user-defined properties. If the current mitigation level is in-
sufficient to satisfy the security property, it increases the mitigation
level by one step. If the current mitigation level minus one would
be sufficient, it steps the level down by one. Otherwise, the current
mitigation level is maintained. To avoid oscillating, the controller
updates the mitigation level only after the above procedure has
provided the same decision x consecutive times. This delays the
decision by x · δ ; we use x = 5. If the mitigation level has changed,
the controller applies it to all the current stage nodes.

This mechanism has a low overhead. Each node must maintain
state in O ( |N |) and communicate it periodically to the controller.
Assuming a tuple count is 8 bytes, and the parallelism level for both
the current and next stage is 8, the resulting traffic overhead to the
controller is 2 · 8 · 8 · 8 = 1KB per δ time units.

6.2 Evaluation
To observe how the system adapts the mitigation level in response
to variations in the workload skew, we run an experiment using
the tumbling count application. We set the parallelism level of the
partial aggregator stage to 16. This implies a maximum entropy of 4.
We define a security property that requires the entropy to be ≥ 3.85.
The initial workload skew is α = 1.2. The initial user-defined value
of n is 4.

During the experiment, we first increase and then decrease the
skew. We expect to see a corresponding increase and subsequent
decrease in the mitigation level. Figure 10 shows the change of
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(a) Tumbling count. (b) NYC taxi. (c) Spike detection.

Figure 9: Latency across applications when varying mitigation level.

Figure 10: Dynamic mitigation.

mitigation level n over time. The workload skew changes at time
t = 30 and t = 60; the events are marked with dashed vertical lines.
The right y-axis plots n; the left y-axis plots the measured entropy.
In the beginning, the system quickly detects that the initial value
of n is higher than needed and decreases n to 3. At time t = 30,
the skew changes to 1.6. As soon as the entropy drops below 3.85,
the system adapts n one step at a time until the security property
is satisfied. At t = 60, the skew drops to 1.4 and the entropy rises.
At t = 65, the entropy is high enough that the system can safely
decrease the value of n to 4, the minimum possible value that still
satisfies the security property. Lastly, there are slight changes of
entropy between t = 80 and t = 95. The system responds by
adjusting the value of n between 4 and 5, to ensure that the security
property is satisfied.

7 DISCUSSION
We acknowledge that our framework still has some limitations.

We described how duplicate tuples generated by either multicast
or broadcast are tagged as duplicates, but must be processed like
valid tuples except that no state changes occur to ensure correctness.
While this makes it harder for an adversary to distinguish between
the valid and duplicate tuples, it does not guarantee that it is impos-
sible. For example, the adversary may succeed in observing whether
state updates happen by performing a memory side-channel attack.
Even though other works [5, 6, 10, 16] already address several of
these attacks, a possible remedy to this issue would be to process

both the valid and the duplicate tuples identically and correct the
computation results in the end. This would worsen the performance
of broadcast and multicast, thereby making anycast even better in
comparison.

Combining leaked information across time or applications (ex-
ecuted on the same input stream) could lead to more informa-
tion leakage. Further research on the impact of partial leakage is a
promising direction for future work.

8 RELATEDWORK
The work by Ohrimenko et al. [12] is closely related to our work.
Their paper presents techniques formitigating network side-channel
leakage in a MapReduce-based system such as VC3 [15]. Their ap-
proach mainly relies on techniques such as oblivious shuffling
between mappers and reducers, as well as evenly distributing the
shuffle traffic between the mappers and reducers. Their techniques
also requires that the data is available prior to executing the MapRe-
duce job. While this assumption is reasonable for batch processing
applications, it is not reasonable for stream processing systems,
since streaming data is often being generated in real time and fu-
ture data is not available.

Data-oblivious primitives and cache-access techniques have been
presented in contexts different from stream processing in prior
work [13]. We think that these techniques might be applicable
to stream processing as well. Other works, such as T-SGX [16],
Déjá Vu [5], Sanctum [6], and GhostRider [10], have proposed
techniques for thwarting memory side-channel attacks. However,
an evaluation of their performance overheads and applicability to
stream processing remains necessary. In addition, these techniques
are useful when dealing with data leakage through cache- and
memory-access patterns only.

Other recent works have also used SGX. Haven [4] allows the se-
cure execution of unmodified Windows applications using a library
OS in an enclave. Similarly, SCONE [3] presents an SGX-based, se-
cure container for running unmodified applications. These generic
mechanisms support unmodified applications; however, their TCB
is large and they have higher overhead than a specialized system.
VC3 [15] realizes a MapReduce framework that minimizes the TCB,
where just the map and reduce functions run within the enclave.
However, this approach does not apply to the cases such as stream
processing where the computations are continuous and latency
is critical. Ryoan [9] is a framework for running untrusted code
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inside the enclave that still ensures that there are no privacy leaks.
However, Ryoan relies on a request-based processing model with
stateless operators, which makes it unsuitable for stateful stream
processing. SecureStreams [8] shows a LuaVM port that runs in
enclaves, and RxLua is used to create streaming applications. In
contrast to this study, we are concerned with the different design
choices that exist when only part of the streaming application is
running within enclaves, and how to tame access-pattern leakage.
Eleos [14] mitigates memory overheads in SGX using a Secure
User-managed Virtual Memory (SUVM), which may provide a so-
lution for mitigating memory overheads in an SGX-based stream
processing system as well.

STYX [17] is a streaming system that uses homomorphic encryp-
tion primitives to do basic computations over encrypted data. STYX
provides a limited choice of operations, and the user needs to be
aware of which cryptosystem, such as order-preserving encryption,
additive homomorphic encryption, or search-enabling encryption,
they should use based on their unique case. M2R [7] provides a
solution to leakage channels that is analogous to distributed Obliv-
ious RAM (ORAM), but incurs far less overhead. The solution has
been implemented as an enhanced version of Hadoop to provide
privacy in MapReduce computations.

Lastly, our anycast technique is inspired by an algorithm known
as the power-of-n choice [11] that achieves better load balancing
in stream processing systems. However, our goal and approach are
different.

9 CONCLUSION
In this paper, we introduce the multicast and anycast mitigation
techniques for decreasing network side-channel leakage due to
key-based grouping, which is a data-dependent routing scheme, in
stream processing systems. We implement these techniques in the
prototype of an SGX-based stream processing system. Our perfor-
mance evaluation shows that anycast supports higher throughput
than multicast and broadcast with the same number of resources,
and scales well to higher mitigation levels without adding signifi-
cant overhead. Multicast and broadcast also require more resources
to provide the same latency and throughput as key-based grouping.
We introduce a mechanism that performs adaptive mitigation-level
selection for anycast, which is crucial since the appropriate miti-
gation level depends on the security property under consideration
and the skew in the workload, which may vary over time.

We conclude that broadcast is infeasible unless the input load is
very low. Multicast is a feasible option when the load is low enough
that each processing node of the application topology can handle
approximately twice the load of the most popular keys. We believe
that anycast is the best option when it is feasible to accept a static
latency overhead. Anycast can sustain high input loads with a few
more resources than key-based grouping.
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