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a b s t r a c t 

Software-Defined Networking (SDN) and OpenFlow are actively being standardized and deployed. These 

deployments rely on switches that come from various vendors and differ in terms of performance and 

available features. Understanding these differences and performance characteristics is essential for ensur- 

ing successful and safe deployments. 

We propose a systematic methodology for SDN switch performance analysis and devise a series of exper- 

iments based on this methodology. The methodology relies on sending a stream of rule updates, while 

relying on both observing the control plane view as reported by the switch and probing the data plane 

state to determine switch characteristics by comparing these views. We measure, report and explain the 

performance characteristics of flow table updates in six hardware OpenFlow switches. Our results describ- 

ing rule update rates can help SDN designers make their controllers efficient. Further, we also highlight 

differences between the OpenFlow specification and its implementations, that if ignored, pose a serious 

threat to network security and correctness. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Software-Defined Networking (SDN), and OpenFlow in partic-

ular are increasingly being standardized and deployed by many

including the hyperscale companies like Google, Microsoft, Face-

book, etc. that consider SDN to be the future of computer networks

[1–4] . This means that the number of SDN developers creating ex-

citing new frameworks [5–7] as well as network administrators

that are using a variety of SDN controllers is rapidly growing. 

In OpenFlow, the control plane involves a controller communi-

cating with OpenFlow agents running (as pat of the firmware) on

the switch-local control plane to instruct them how to configure

the data plane by sending flow modification commands that place

rules in the forwarding tables. A single deployment can use one

or more type of OpenFlow switches, and the developer typically

assumes that if the switch conforms to a specification, it will per-

form as a well-behaved black box. SDN’s transition from research

to production means that real deployments are demanding new

levels of reliability and performance requirements that are neces-
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ary for production environments. For example, consistent network

pdate schemes [8–10] are trying to ensure that packets do not get

ost while new forwarding rules are being installed. Schemes also

xist for ensuring congestion-free updates [11] and for scheduling

ule installations to minimize rule installation time [9,12–14] . All of

hese assume quick rule installation latency, and many rely on up-

ate confirmations from the switch-local control plane before pro-

eeding to the next step. 

Initially, sporadic OpenFlow switch performance measurements

ere reported [15–17] . A structured set of measurements was re-

orted in the pioneering work on OFLOPS [18] , a generic frame-

ork for OpenFlow switch evaluation. For example, it was shown

hat there are issues with the implementation of the barrier com-

and and it is important to understand and optimize SDN con-

rol in the presence of switch diversity [19] . This article extends

ur previous reports on switch performance [20] with new find-

ngs, deeper explanations and measurement results for double the

umber of switches (six instead of three), which include both low-

nd high-end devices. 

While measuring switch performance might appear to be a sim-

le task, it nevertheless has its own challenges. The biggest issue is

hat each switch under test has a lot of “quirks” that result in un-

xplained performance deviations from its usual behavior. There-

ore, thoroughly evaluating and explaining these phenomena takes

https://doi.org/10.1016/j.comnet.2018.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.02.014&domain=pdf
mailto:dmk@kth.se
mailto:dkostic@acm.org
https://doi.org/10.1016/j.comnet.2018.02.014
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Table 1 

Summary of key findings presented in this paper. 

Section Key finding 

4.1 Barriers should not be trusted! Updates are often applied in hardware hundreds of milliseconds after a barrier that confirms them. One of the tested 

switches reorders updates despite the barriers. 

4.2 In the worst case, rules were installed minutes after a switch confirmed the installation. 

4.3 Firmware is often responsible for switch faulty behavior and low performance. 

4.4 Rule modification operation is non-atomic and switch may even flood packets for a transient period of time! 

4.5 Rule updates get reordered even if there is a barrier between them and they affect the same flows. Some switches ignore priorities. 

5.1 Few outstanding requests are enough to saturate the switch. 

5.2 Rule updates get slower as the flow table occupation gets higher. 

5.3 Using rule priorities may degrade update performance by orders of magnitude. Rule update patterns matter and switches can take advantage of an update 

locality. 

5.4 Barriers are costly at some switches. 
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(  
 substantial effort. For example, finding the absolute rule installa-

ion count or rate that takes the switch across the performance

hreshold can require a large number of experiments. Moreover,

here is a very large number of combinations of rule modification

ommands to test with. 

In this paper, we set out to advance the general understand-

ng of OpenFlow switch performance. Specifically, the focus of this

aper is on analyzing control plane performance and flow table

pdate rate in hardware OpenFlow switches that support version

.0 or 1.3 of this protocol. We note that data plane forwarding

erformance is not in the scope of this paper. Our contributions

re as follows: ( i ) We advance the state-of-the-art in measuring

penFlow switch control plane performance and its interaction

ith the data plane (for example, we dissect rule installation la-

ency in a number of scenarios that bring the switch to the limit),

 ii ) We devise a more systematic way of switch testing, i.e. , along

any different dimensions, than the existing work, and ( iii ) To

e best of our knowledge, this is the first study to report sev-

ral new types of anomalous behavior in OpenFlow switches. To

urther foster OpenFlow switch measurements and improvements

o our work, we have made our tool publicly available at https:

/bitbucket.org/bitnsg/switch-benchmark/wiki/Home . Our tool was 

lready adopted at a large European IXP while in the process of

esting and deploying SDN. 

Our key findings are as follows: ( i ) Control plane performance

s widely variable, and it depends on flow table occupancy, pri-

rities, size of batches and even rule update patterns. In partic-

lar, priorities can cripple performance; ( ii ) Switches might peri-

dically or randomly stop processing control plane commands for

p to 500 ms; ( iii ) Data plane state might not reflect the con-

rol plane—it might fall behind by several minutes and it might

lso manifest rule installations in a different order than issued;

 iv ) Seemingly atomic data plane updates might not be atomic at

ll. We summarize all findings and reference the section describing

ach of them in Table 1 . By including new experiments and three

ew switches, this manuscript extends our previous findings by: ( i )

howing a new inconsistency pattern where data plane and con-

rol plane state divergence is unbounded; ( ii ) Showing the variable

haracteristics of this divergence; ( iii ) Showing that firmware is re-

ponsible for some issues by reporting our findings to a vendor and

esting a fixed version; ( iv ) Measuring that correct barrier handling

s time consuming and affects switch update performance; ( v ) Con-

rming that different rule priorities slow down even a high-end

witch. 

The impact of our findings is multifold and profound. The non-

tomicity of seemingly atomic data plane updates means that there

re periods when the network configuration is incorrect despite look-

ng correct from the control plane perspective . Existing tools that

heck if the control plane is correctly configured [21–23] are un-

ble to detect these problems. Moreover, the data plane can fall be-

ind and unfortunately barriers cannot be trusted . This means that

s  
pproaches for performing consistent updates need to devise a dif-

erent way of defining when a rule is installed; otherwise they are

ot providing any firm guarantee. Finally, because the performance

f a single switch depends on previously applied updates, develop-

rs need to account for this variable performance when designing

heir controllers. 

The benefits of our work are numerous. First, we hope that SDN

ontroller and framework developers will find our findings useful

hen trying to ensure consistent performance and reliability de-

pite the variety of switches they might encounter. Thus, we re-

ort most of our findings with these developers in mind. For ex-

mple, the existence of performance anomalies underlies the diffi-

ulty of computing an offline schedule for installing a large num-

er of rules. Second, our study should serve as a starting point

o measurement researchers to develop more systematic switch

erformance testing frameworks ( e.g. , that have the ability to ex-

mine a large number of possible scenarios and pinpoint anoma-

ies). Reporting findings presented in this paper to switch vendors

as already helped them to detect bugs and improve the switch

rmware. Third, efforts that are modeling switch behavior [15] ,

hould consult our study to become aware of the difficulty of pre-

isely modeling switch performance. 

Finally, we do not want to blame anyone and we know that

penFlow support is sometimes provided as an experimental fea-

ure in the switches. The limitations we highlight should be treated

s a hint where interesting research problems lay. If these prob-

ems still exist after several years of development, they may be

aused by limitations that are hard or impossible to overcome, and

ould be present in the future switch generations as well. An ex-

mple of such a well known limitation, unrelated to performance,

s the flow table size. Researchers and switch developers under-

tand that big TCAMs are expensive and thus try to save space in

arious ways [24–27] . 

The remainder of the paper is organized as follows.

ection 2 presents background and related work. We describe

ur measurement methodology in Section 3 . We discuss in detail

ur findings about the data and control planes in Section 4 and

how additional update rate measurements in Section 5 . 

. Background and related work 

SDN is relatively young, and therefore we first introduce the do-

ain and explain the terminology used in this paper. We present

DN as realized by the OpenFlow protocol — currently the most

opular implementation of SDN. The main idea behind SDN is

o separate the switch data plane, that forwards packets, from

he control plane, that is responsible for configuring the data

lane. The control plane is further physically distributed between

 switch and a controller running on a general-purpose computer

or cluster for reliability). The controller communicates with the

witch to instruct it how to configure the data plane by sending

https://bitbucket.org/bitnsg/switch-benchmark/wiki/Home
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flow modification commands that place rules in the switch’s flow

table. The switch-local control plane is realized by an OpenFlow

agent — firmware responsible for the communication with the con-

troller and for applying the updates to the data plane. 

The controller generally needs to keep track of what rules the

switch has installed in the data plane. Any divergence between the

view seen by the controller and the reality may lead to incorrect

decisions and, ultimately, wrong network configuration. However,

the protocol does not specify any positive acknowledgment that an

update was performed [28] . The only way to infer this information

is to rely on the barrier command. As specified in the OpenFlow

protocol [29] , after receiving a barrier request, the switch has to

finish processing all previously-received messages before execut-

ing any messages after the barrier request. When the processing is

complete, the switch must send a barrier reply message. 

Both data and control plane performance is essential for suc-

cessful OpenFlow deployments, therefore it was a subject of mea-

surements in the past. During their work on the FlowVisor net-

work slicing mechanism, Sherwood et al. [17] report CPU-limited

switch performance of about a few hundreds of OpenFlow port

status requests per second. Similarly, as part of their work on

the DevoFlow modifications of the OpenFlow model, Curtis et al.

[16] identify and explain the reasons for relatively slow rule instal-

lation rate on an HP OpenFlow switch. OFLOPS [18] is perhaps the

first framework for structured OpenFlow switch evaluation. It com-

bines a generic and open software framework with high-precision

hardware instrumentation. OFLOPS performs fine-grained measure-

ments of packet modification times, flow table update rate, and

flow monitoring capabilities. This work was the first to make a

number of important observations, for example that some Open-

Flow agents did not support the barrier command. It was also the

first work to report on the delay between the control plane’s rule

installation time and the data plane’s ability to forward packets

according to newly installed rules. OFLOPS-Turbo [30] is a con-

tinuation of this work that integrates with the Open Source Net-

work Tester [31] , which is built upon the NetFPGA platform to im-

prove measurement precision even more. Huang et al. [15] per-

form switch measurements to construct high-fidelity switch mod-

els that may be used during emulation with the software-based

Open vSwitch tool. Their work quantifies the variations in control

path delays and the impact of flow table design (hardware, soft-

ware, combinations thereof) at a coarse-grained level (average be-

havior). They also report surprisingly slow flow setup rates. Rel-

ative to these works, we dissect switch performance over longer

time periods, and more systematically in terms of rule combina-

tions, set of parameters, batch sizes, in-flight batch numbers, pres-

ence of barrier messages, and switch firmware versions. In ad-

dition, we identify thresholds that reveal previously unreported

anomalous behaviors. 

Several works have considered various issues that arise with

diverse SDN switch hardware capabilities and ways to account

for this diversity. A recent measurement study [32] focuses on

data plane update rates. We observe both data and control planes

and compare states in both. We also reveal performance variabil-

ity present only in longer experiments. Lazaris et al. [33] was

perhaps the first proposal to build a proactive OpenFlow switch

probing engine. Jive measures performance using predetermined

patterns, e.g. , inserting a sequence of rules in order of increas-

ing/decreasing priority, and reports large differences in installation

times in an hardware switch. The observed switch behavior can

be stored in a database, and later used to increase network perfor-

mance. We show that the switch performance depends on so many

factors that such a database would be difficult to create. Lazaris

et al. [19] proposed a proactive probing engine that infers key

switch capabilities and behaviors according to well-structured pat-

terns. It uses the probing results to perform automatic switch con-
rol optimization. Our study contributes a methodology that can

e used to enrich the types of inferences used in this approach.

OSIX [34] notices the diversity of OpenFlow switches and creates

 layer of abstraction between the controller and the switches. The

dea is to be able to offer a portable API whose implementation

akes use of commands optimized for a particular switch based

n its capabilities and performance. However, the authors do not

nalyze dynamic switch properties as we do. We believe our work

ould be useful for NOSIX to improve the optimization process. 

Finally, this paper adds many new results and insights to our

revious work on the same topic [20] as we have elaborated ear-

ier. 

. Measurement methodology 

This section describes the methodology we follow to design

he benchmarks that assess control and data plane update perfor-

ance of switches under test. 

.1. Tools and experimental setup 

In this study we focus on two metrics describing switch be-

avior: flow table rule update rate and correspondence between

ontrol plane and data plane views. The second metric is quan-

ified by the time gap between when the switch confirms a rule

odification and when the modified rule starts affecting packets.

e designed a general methodology that allows for systematic ex-

loration of switch behaviors under various conditions. At the be-

inning of each experiment, we prepopulate the switch flow table

ith R rules. Unless otherwise specified, the rules are non overlap-

ing and have the default priority. Each rule matches a flow based

n a pair of IP source-destination addresses, and forwards packets

o switch port α. For clarity, we identify flows using contiguous

nteger numbers starting from −R + 1 . According to this notation,

he prepopulated rules match flows in the range −R + 1 to 0, in-

lusive. The initial setup rules have negative numbers so that the

ain experiment rules start from 1. 

After initializing the switch’s hardware flow table, we perform

ow table updates and measure their behaviors. In particular, we

end B batches of rule updates, each batch consisting of: B D rule

eletions, B M 

rule modifications and B A rule insertions. Each batch

s followed by a barrier request. Depending on the experiment, we

djust the number of in-flight batches. The controller sends a new

atch only if the switch did not send a reply for at most a given

umber of previously sent barriers. In the default setup, we set

 D = B A = 1 and B M 

= 0 . If B D is greater than 0, batch i deletes

ules matching flows with numbers between −R + 1 + (i − 1) ∗ B D 
nd −R + i ∗ B D . If B A is greater than 0, batch i installs rules that

atch flows with numbers in range between (i − 1) ∗ B A + 1 and

 

∗B A and forwards packets to port α. As a result, each batch re-

oves the oldest rules. Note that the total number of rules in the

able remains stable during most experiments (in contrast to previ-

us work such as [33] and [18] that measure only the time needed

o fill an empty table). 

To measure data plane state, in some experiments, we inject

nd capture data plane traffic. We send packets that belong to

ows F start to F end (inclusive) at a rate of about 10 0,0 0 0 packets

er second (which translates to about 10 0 0 packets per flow per

econd). 

In our study, we have explored a wide range of possible pa-

ameters for our methodology. For brevity, in the next sections, we

ighlight results where we instantiate the methodology with spe-

ific parameters that led to interesting observations. In the exper-

ment descriptions we call the setup described above with B D =
 A = 1 , B M 

= 0 and all rules with equal priority as a general exper-

mental setup. Finally, unless an experiment shows variance greater
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Tested switchMeasurement 
host

Control 
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Generator
(Python)
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Fig. 1. Overview of our measurement tools and testbed setup. 
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han 5% across runs, we repeat it three times and report the aver-

ge. Because the results have a small deviation across runs, unless

therwise specified, we do not show confidence intervals. 

Measurement tool: Based on our initial investigation, as well

s previously reported results [15] , we identify three main re-

uirements for a measurement tool: ( i ) Flexibility, ( ii ) Portability,

nd ( iii ) Sufficient precision. Our previous experience suggests that

witches behave unexpectedly, and thus we need to tailor the ex-

eriments to locate and dissect problems. Moreover, as the tested

witches can modify at most a few thousands of rules per second,

e assume that a millisecond measurement precision is sufficient. 

To achieve the aforementioned goals, we built a tool that con-

ists of three major components that correspond to the three

enchmarking phases: input generation, measurement and data

nalysis ( Fig. 1 ). 

First, an input generator creates control plane rule modifica-

ion lists and data plane packet traces used for the measurements.

nless otherwise specified, the forwarding rules used for the ex-

eriments match traffic based on IP source/destination pairs and

orward packets to a single switch port. Moreover, we notice that

ome switches can optimize rule updates affecting the same rule;

e therefore make sure that modifications affect different rules.

o ensure this, by default, we use consecutive IPs for matches. Fur-

hermore, we cross-check our results using random matches and

pdate patterns. 

We refer to the control plane measurement engine as the con-

roller as it emulates the behavior of an OpenFlow controller. We

mplement it using NOX [35] and ROFL [36] libraries that can is-

ue rule updates at a much higher rate than what the hardware

witches can handle. 3 The engine records time of various interac-

ions with the switch ( e.g. , flow modification sent, barrier reply re-

eived) and saves all its outputs into files. We additionally record

ll control plane traffic using tcpdump. We rely on existing tcpre-

lay and tcpdump tools to both send packets based on a pcap file

nd record them. This way we ensure that packets flow only in one

irection and have a single interaction with a switch. To remove

ime synchronization issues, we follow a simple testbed setup with

he switch connected to a single host on multiple interfaces — the

ost handles the control plane as well as generates and receives

raffic for the data plane. Note that we do not need to fully satu-

ate the switch data plane, and thus a conventional 48-core host is

apable of handling all of these tasks at the same time. 

Finally, a modular analysis engine reads the output files and

omputes the metrics of interest. Modularity means that we can

dd a new module to analyze a different aspect of the measured

ata. We implement the analysis engine as a collection of modules

ode in Python. 
3 Our benchmark with software OpenVSwitch handles ∼ 42, 0 0 0 updates/s. 
Switches under test: We benchmark three ASIC-based switches

apable of OpenFlow 1.0 and two ASIC-based switches capable

f OpenFlow 1.3 support: HP ProCurve 5406zl with K.15.10.0 0 09

rmware, Pica8 P-3290 with PicOS 2.0.4, Dell PowerConnect 8132F

ith beta 4 OpenFlow support, Switch X and Switch Y. They use

roVision, Broadcom Firebolt, Broadcom Trident+, Switch X and

witch Y ASICs, respectively. We additionally compare how Switch

 behaves with two firmware versions: V1 and V2. We anonymize

wo of the switches since we did not get a permission to use their

ames from their respective vendors. We note that Switch Y is a

igh-end switch. These switches have two types of forwarding ta-

les: hardware and software. The switches have various hardware

ow table sizes: about 150 0, 20 0 0, 750, 450 0, and 20 0 0 rules,

espectively. While hardware table sizes and levels of OpenFlow

upport vary, we make sure that all test rules ultimately end up

n hardware tables. Moreover, some switches implement a com-

ined mode where packet forwarding is done by both hardware

nd software, but this imposes high load on the switch’s CPU and

rovides lower forwarding performance. Thus, we avoid studying

his operating mode. Further, as mentioned before, analyzing the

ata plane forwarding performance is also out of scope of this pa-

er. We also benchmark NoviSwitch 1132— a high-end network-

rocessor based, OpenFlow 1.3 switch running firmware version

00.0.1. 5 Each of its 64 flow tables fits over 40 0 0 rules. We caution

hat the results for this switch may not directly compare to those

f the other measured devices due to the different switch architec-

ure. In particular, our methodology correctly characterizes the up-

ate rates of flow tables but does not establish a relation between

ow table occupancy and maximum forwarding speed, for which

SICs and network processor might exhibit different behaviors. 

Finally, since the switches we tested are located in different

nstitutions, there are small differences between the testing ma-

hines and the network performance. However, the setups are

omparable. A testing computer is always a server-class machine

nd the network RTT varies between 0.1 and 0.5 ms. 

. Flow table consistency 

While the only view the controller has of the switch is through

he control plane, the real traffic forwarding happens in the data

lane. In this section we present the results of experiments where

e monitor rule updates in the control plane and at the same time

end traffic to exercise the updated rules. The unexpected behav-

or we report in this section may have negative implications for

etwork security and controller correctness. 
4 There are plans to optimize and productize this software. 
5 We repeated our tests with firmware 300.0.5 but observed similar results. 
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Fig. 2. Control plane confirmation times and data plane probe results for the same flows. Switch data plane installation time may fall behind the control plane acknowledg- 

ments and may be even reordered. 
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4.1. Synchronicity of control and data planes 

Many solutions essential for correct and reliable OpenFlow de-

ployments ( e.g. , [10,11] ) rely on knowing when the switch applied

a given command in the data plane . The natural method to get such

information is the barrier message. 6 Therefore, it is crucial that

this message works correctly. However, as authors of [18] already

hinted, the state of the data plane may be different than the one

advertised by the control plane. Thus we set out to measure how

these two views correspond to each other at a fine granularity. 

We use the default setup extended with one match-all low pri-

ority rule that drops all packets 7 and we inject data plane flows

number F start to F end . For each update batch i we measure the

time when the controller receives a barrier reply for this batch and

when the first packet of flow i reaches the destination. 

Fig. 2 shows the results for R = 300 , B = 300 , F start = 1 and

F end = 100 . There are three types of behavior that we observe:

desynchronizing data and control plane states, reordering rules de-

spite barriers and correct implementation of the specification. 

Switch X: The data plane configuration of Switch X is slowly

falling behind the control plane acknowledgments – packets start

reaching the destination long after the switch confirms the rule

installation with a barrier reply. The divergence increases linearly

and, in this experiment reaches 300 ms after only 100 rules. The

second observation is that Switch X installs rules in the order of their

control plane arrival . After reporting the problem of desynchronized

data and control plane views to the switch vendor, we received a

new firmware version that fixed observed issues to some extent.

We report the improvements in Section 4.3 . 
6 As specified, after receiving a barrier request, the switch has to finish processing 

all previously-received messages before executing any messages after the barrier 

request. When the processing is complete, the switch must send a barrier reply 

message [29] . 
7 We need to use such a rule to prevent flooding the control channel with the 

PacketIn messages caused by data plane probes or flooding the probes to all ports. 
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HP 5406zl: Similarly to Switch X, the data plane configuration

f HP 5406zl is slowly falling behind the control plane acknowl-

dgments. However, unlike for Switch X, after about 50 batches,

hich corresponds to 100 rule updates (we observed that adding

r deleting a rule counts as one update, and modifying an exist-

ng rule as two), the switch stops responding with barrier replies for

00 ms , which allows the flow tables to catch up. After this time

he process of diverging starts again. In this experiment the diver-

ence reaches up to 82 ms, but can be as high as 250 ms depending

n the number of rules in the flow table. Moreover, the frequency

nd the duration of this period does not depend on the rate at

hich the controller sends updates, as long as there is at least one

pdate every 300 ms. The final observation is that HP 5406zl in-

talls rules in the order of their control plane arrival . 

Pica8 P-3290: Similarly to HP 5406zl, Pica8 P-3290 stops re-

ponding to barriers in regular intervals. However, unlike HP

406zl and Switch X, Pica8 P-3290 is either processing control

lane (handling update commands and responding to barriers), or

nstalling rules in TCAM and never does both at the same time.

oreover, despite the barriers, the rules are not installed in hardware

n the order of arrival . The delay between data and control plane

eaches up to 400 ms in this experiment. When all remaining rules

et pushed into hardware, the switch starts accepting new com-

ands in the control plane again. We confirmed with a vendor

hat because the synchronization between the software and hard-

are table is expensive, it is performed in batches and the order

f updates in a batch is not guaranteed. When the switch pushes

pdates to hardware, its CPU is busy and it stops dealing with the

ontrol plane. 8 

Dell 8132F, Switch Y and NoviSwitch 1132: All three switches

ake sure that no control plane confirmation is issued before a rule

ecomes active in hardware. In this experiment we do not see any

eriods of idleness as the switch pushes rules to hardware all the
8 The Vendor claims that this limitation occurs only in firmware prior to PicOS 

.2. 
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Fig. 3. Control plane confirmation times and data plane probe results for the same flows in Switch X (firmware version V1) depending on flow table occupancy. The rate 

suddenly slows down after about 4600 flow installations (including initial rules installed before the experiment starts). 

Table 2 

Data plane synchronicity key findings summary. 

Switch Data plane 

Switch X, firmware V1 Falls behind indefinitely. Up to 4 minutes in our 

experiments. 

Switch X, firmware V2 In sync with control plane 

HP 5406zl Often falls behind up to 250 ms. Indefinitely in 

corner cases (up to 22s in our tests). 

Pica8 P-3290 Reorders + behind up to 400 ms 

Dell 8132F In sync with control plane 

Switch Y In sync with control plane 

NoviSwitch 1132 In sync with control plane 
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ime and waits for completion if necessary. Additionally, because

oviSwitch 1132 is very fast, we increased the frequency of send-

ng data plane packets in order to guarantee required measurement

recision. Table 2 . 

Summary : To reduce the cost of placing rules in a hardware flow

able, vendors allow for different types (e.g., falling behind or reorder-

ng) and amounts (up to 400 ms in this short experiment) of tem-

orary divergence between the hardware and software flow tables.

herefore, the barrier command does not guarantee flow installation.

gnoring this problem leads to an incorrect network state that may

rop packets, or even worse, send them to an undesired destination! 

.2. Variability in control and data plane behavior 

The short experiment described in the previous section reveals

hree approaches to data and control plane synchronization. In this

ection we report more detailed unexpected switch behavior types

bserved when varying parameters in that experiment. The over-

ll setup stays the same, but we modify the number of rules in

he flow tables, length of the experiments and range of monitored

ules. 

Switch X: The short experiment revealed that Switch X never

ives the data plane state a chance to synchronize with control

lane acknowledgments. In this extended experiment we issue

0 0 0 batches of rule deletion and rule installation and monitor ev-

ry 10th rule. Fig. 3 shows the results for various flow table occu-

ancy (7%, 25%, 50% and 75%). There are three main observations.

irst, the switch indeed does not manage to synchronize the con-

rol and data plane states. Second, the update rate increases when

he switch is no longer busy with receiving and sending control

lane messages. This is visible as a change of slope of the data

lane line in Fig. 3 (a) and (b). We confirmed this observation by

ending additional echo or barrier messages. If the switch control

lane stays busy, the data plane line grows at a constant rate. We

elieve a low power CPU used in this switch can easily become

 bottleneck and cause the described behavior. Finally, after in-

talling about 4600 rules since the last full table clear, the switch

ecomes significantly slower and the gap between what it reports

n the control plane and its actual state quickly diverges. We kept
onitoring the data plane for 4 minutes after the switch reported

ll rule modifications completed, and still not all rules were in

lace yet. We run additional tests and it seems that even perform-

ng updates at a lower rate (2 updates every 100 ms) or waiting

or a long time (wait for 8s after every 200 updates) does not solve

he problem. The risk is that the switch performance may degrade in

ny deployment where the whole flow table is rarely cleared . We re-

orted aforementioned issues to the switch vendor and received a

onfirmation and an improved firmware version. 

HP 5406zl: The pattern observed in the previous experiment

oes not change when parameters vary except for two details de-

ending on the flow table occupancy. We show them in Fig. 4 .

irst, the 300 ms inactivity time is constant across all the exper-

ments, but happens three times more often (every 33 updates) if

here are over 760 rules in the flow table ( Fig. 4 (c)). Second, when

he number of rules in the flow table increases, the maximum de-

ay between control and data plane update increases as well. It

eaches 250 ms when there are 750 rules in the table ( Fig. 4 (b)).

or over 760 rules, the switch synchronizes more frequently, so the

aximum delay is smaller again ( Fig. 4 (c)) but goes back to 150 ms

or 1300 rules ( Fig. 4 (d)). We conclude that the real flow table up-

ate speed in HP 5406zl depends on the number of rules in the table ,

nd the switch accounts for a possible delay by letting the data

lane to catch up in regular intervals. 

However, we found cases when the switch does not wait long

nough, which may lead to unlimited divergence between the data

nd control planes. First, in Fig. 5 we show that when different

riorities are used (each rule has a different priority in this ex-

eriment), the switch becomes very slow in applying the changes

n hardware without notifying the control plane. This behavior is

specially counter-intuitive since the switch does not support pri-

rities in hardware. Second, our experiments show that rule dele-

ions are much faster than installations. Fig. 6 shows what happens

hen we install 500 rules starting from an empty flow table with

nly a single drop-all rule. Until there are 300 rules in the table,

he 300 ms long periods every 100 updates are sufficient to syn-

hronize the views. Later, the data plane modifications are unable

o keep up with the control plane. 

Pica8 P-3290: There are no additional observations related to

ica8 P-3290. The pattern from Fig. 2 (c) occurs during the whole

xperiment. 

Dell 8132F: As depicted in Fig. 7 , the switch starts updat-

ng rules quickly, but suddenly slows down after 210 new rules

nstalled and maintains this slower speed (verified up to 20 0 0

atches). However, even after the slowdown, the control plane re-

iably reflects the state of the data plane configuration. Addition-

lly, we observe periods when the switch does not install rules or

espond to the controller, but these periods are rare, non repro-

ucible and do not seem to be related to the experiments. 

Switch Y: Although in the original experiment we observe no

eriods of idleness, when the flow table occupancy and the exper-

ment running time increase, the switch stops processing requests
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Fig. 4. Control plane confirmation times and data plane probe results for the same flows in HP 5406zl depending on flow table occupancy. The rate slows down and the 

pattern changes for over 760 rules in the flow table. 

Fig. 5. Control plane confirmation times fall behind the data plane probe results 

in HP 5406zl when using rules with different priorities. The scale of divergence is 

unlimited. 

Fig. 6. Control plane confirmation times fall behind the data plane probe results in 

HP 5406zl when filling the flow table. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Control plane confirmation times and data plane probe results in Dell 8132F 

are synchronized, but the update rate suddenly slows down after about 210 newly 

installed rules. 

Fig. 8. Control plane confirmation times and data plane probe results in Switch Y 

with 95% table occupancy are synchronized, but the switch stops processing new 

updates for 600 ms after every 2 s. 
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for hundreds of milliseconds (about 600 ms with 95% occupancy

– Fig. 8 ) every 2 s. Unlike HP 5406zl, here the idleness frequency

depends on time, not the number of updates. Decreasing the rate

at which the controller issues updates does not affect the idleness

duration or frequency. During the period when the switch does not

update its rules, it still responds to control plane messages ( e.g. ,

barriers), but does it slightly slower, as if it was busy. We believe,

this behavior allows the switch to reoptimize its flow tables or per-

form other periodic computations. We are in the process of ex-

plaining the root cause with the vendor. 

NoviSwitch 1132: Behavior reported in Fig. 2 (f) repeats in

longer experiments as well. 
Summary : Flow table update rate often depends on the number of

nstalled rules, but the control plane acknowledgments sometimes do

ot reflect this variability. A switch flow table state may be minutes

ehind what it reported to the control plane. 

.3. Firmware updates can improve switch performance 

We reported our findings to switch vendors and some of them

rovided us with new, improved firmware versions. 

Switch X: Most notably, Switch X with firmware version V2, no

onger allows for data and control plane desynchronization. As we

how in Fig. 9 , both views are synchronized and the rate does not

ncrease when all control plane messages get processed, since they
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Fig. 9. Control plane confirmation times and data plane probe results for the same flows in Switch X (firmware version V2). Data and control plane views are synchronized, 

but the rate still slows down after about 4600 flow installations. 
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Table 3 

Time required to observe a change after a rule modification. The maximum time 

when packets do not reach either destination can be very long. 

Switch Pica8 P-3290 Dell 8132F HP 5406zl 

avg/max gap in packets [ms] 2.9/7.7 2.2/12.4 10/190 
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re no longer processed before the data plane update ends. On the

ther hand, the switch still significantly slows down after about

600 rule installations without full table cleaning. We repeat the

xperiment where we perform single rule installations and dele-

ions, keeping flow table occupancy stable. Then, we stop an exper-

ment and resume it after 10 min. Fig. 9 (b) shows the results for

ccupancy of 50% (2250 rules). Behavior with the new firmware

s the same as with the old version ( Fig. 3 (c)). Finally, at the be-

inning, the updates are slightly slower than in the previous ver-

ion and slightly faster when the switch slows down (compare to

ig. 3 ). 

NoviSwitch 1132: When we started our measurements of No-

iSwitch 1132, the switch was running firmware version 250.3.2.

he update rate was initially stable at about 60–70 rules/s, but af-

er longer experiments started dropping to single digits and the

witch required reboots. An investigation revealed that excessive

ogging was causing the disk space to run out in our longer and

pdate-intensive experiments. We reported this fact to the vendor

ho provided us with a new firmware version: 250.4.4. A simple

oftware upgrade allowed the switch to reach stable update rate of

bout 60 0 0 rules/s — two orders of magnitude higher than before.

nother upgrade (to version 300.0.1 used to get all measurements

eported in this paper) increased the update rate by another 10–

5% and fixed a bug that was causing the switch to crash when

sing long sequences of upgrades of rules with changing priorities.

Summary : Firmware is often responsible for switch faulty behav-

or and an upgrade can fix bugs or significantly improve performance

ithout replacing hardware. 

.4. Rule modifications are not atomic 

Previously, we observed unexpected delays for rule insertions

nd deletions. A natural next step is to verify if modifying an ex-

sting rule exhibits a similar unexpected behavior. 

A gap during a FlowMod: As before, we prepopulate the flow

able with one low priority match-all rule dropping all packets and

 = 300 flow specific rules forwarding packets to port α. Then, we

odify these 300 rules to forward to port β . At the same time,

e send data plane packets matching rules 101 − 200 at a rate of

bout 10 0 0 packets/s per flow. For each flow, we record a gap be-

ween when the last packet arrives at the interface connected to

ort α and when the first packet reaches an interface connected

o β . Expected time difference is 1 ms because of our measure-

ent precision, however, we observe gaps lasting up to 7.7, 12.4

nd 190 ms on Pica8 P-3290, Dell 8132F and HP 5406zl respec-

ively ( Table 3 ). At HP 5406zl the longest gaps correspond to the

witch inactivity times described earlier (flow 150, 200). A similar

xperiment with Switch X, Switch Y and NoviSwitch 1132 shows
hat average and maximum gaps are within our measurement pre-

ision. 

Drops: To investigate the forwarding gap issue further, we up-

rade our experiment. First, we add a unique identifier to each

acket, so that we can see if packets are being lost or reordered.

oreover, to get higher precision, we probe only a single rule

number 151 – a rule with an average gap, and number 150 – a

ule with a long gap on HP 5406zl) and increase our probing rate

o 50 0 0 packets/s. 

We observe that Pica8 P-3290 does not drop any packets. A

ontinuous range of packets arrive at port α and the remaining

ackets at β . On the other hand, both Dell 8132F and HP 5406zl

rop packets at the transition period for flow 150 (3 and 17 pack-

ts respectively). For flow number 150, HP 5406zl drops an unac-

eptable number of 782 packets. This suggests that the update is

ot atomic —a rule modification deactivates the old version and in-

erts the new one, with none of them forwarding packets during

he transition. 

Unexpected action: To validate the non-atomic modification

ypothesis we propose two additional experiments. The setup is

he same but in variant I the low priority rule forwards all traffic

o port γ and in variant II, there is no low priority rule at all. Incor-

ectly, but as expected, in variant I both Dell 8132F and HP 5406zl

orward packets in the transition period to port γ . The number

nd identifiers of packets captured on port γ fit exactly between

he series captured at port α and β . Also unsurprisingly, in variant

I, Dell 8132F floods the traffic during the transition to all ports

default behavior for this switch when there is no matching rule).

hat is unexpected is that HP 5406zl in variant II, instead of send-

ng PacketIn messages to the controller (default when there is no

atching rule), floods packets to all ports. We reported this find-

ng to the HP 5406zl vendor and still wait for a response with a

ossible explanation of the root cause. 

The only imperfection we observed at Pica8 P-3290 in this test

s that if the modification changes the output port of the same rule

etween α and β frequently, some packets may arrive at the des-

ination out of order. We did not record any issues with rule mod-

fications in Switch Y and Switch X. 

Finally we observed that NoviSwitch 1132 reorders packets be-

onging to different flows, but the timescale of this reordering (mi-

roseconds) is much below our probing frequency. That suggests,
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Table 4 

Combinations of overlapping low and high-priority rules. 

Variant R hi R lo 

IP src IP dst IP src IP dst 

I exact exact exact exact 

II exact ∗ ∗ exact 

III ∗ exact exact ∗

IV exact exact exact ∗

V ∗ exact exact exact 

Table 5 

Priority handling of overlapping rules. Both HP 5406zl and Pica8 P-3290 violate the 

OpenFlow specification. 

Switch Observed/inferred behavior 

Switch X OK 

HP 5406zl Ignores priority, last updated rule permanently wins 

Pica8 P-3290 OK for the same match. For overlapping match may 

temporarily reorder (depending on wildcard 

combinations) 

Dell 8132F OK (Reorders within a batch) 

Switch Y OK 

NoviSwitch 1132 OK 
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that the reordering is unrelated to an incorrect order of rule mod-

ifications. Indeed, we confirmed that packets in different flows get

reordered even if there are no rule modifications. We also checked,

that packets in the same flow do not get reordered. The switch

vendor confirmed that packets belonging to different flows may be

processed by different cores of the network processor. They also

ensured us, that assuming not too complicated actions, the pro-

cessing power should be sufficient even for small packets. 

Summary : Two out of six tested switches have a transition pe-

riod during a rule modification when the network configuration is

neither in the initial nor the final state. The observed action of for-

warding packets to undesired ports is a security concern. Non-atomic

flow modification contradicts the assumption made by controller de-

velopers and network update solutions. Our results suggest that either

switches should be redesigned or the assumptions made by the con-

trollers have to be revisited to guarantee network correctness. 

4.5. Priorities and overlapping rules 

The OpenFlow specification clarifies that, if rules overlap ( i.e. ,

two rules match the same packet), packets should always be pro-

cessed only by the highest priority matching rule. Since our default

setup with IP src/dst matches prevents rule overlapping, we run

an additional experiment to verify the behavior of switches when

rules overlap. 

The idea of the experiment is to install (in the specified or-

der) two different priority rules R hi and R lo that can match the

same packet. R hi has a higher priority and forwards traffic to

port α, R lo forwards traffic to port β . We test five variants of

matches presented in Table 4 . R hi is always installed before and

removed after R lo to prevent packets from matching R lo . Initially,

there is one low priority drop-all rule and 150 pairs of R hi and

R lo . Then we send 500 update batches, each removing and adding

one rule: (−R lo, 1 , + R hi, 151 ) , (−R hi, 1 , + R lo, 151 ) , (−R lo, 2 , + R hi, 152 ) , . . .

We send data plane traffic for 100 flows. If a switch works cor-

rectly, no packets should reach port β . 

Table 5 summarizes the results. First, as we already noted, Dell

8132F, Switch Y, Switch X and NoviSwitch 1132 do not reorder up-

dates between batches and therefore, there are no packets cap-

tured at port β in any variant. The only way to allow some pack-

ets on port β in Dell 8132F is to increase the batch size – the

switch freely reorders updates inside a batch and seems to push

them to hardware in order of priorities. On the other hand, Pica8
-3290 applies updates in the correct order only if the high prior-

ty rule has the IP source specified. Otherwise, for a short period

f time—210 ms on average, 410 ms maximum in the described

xperiment—packets follow the low priority rule. Our hypothesis is

hat the data structure used to store the software flow table sorts

he rules such that when they are pushed to hardware the ones

ith IP source specified are pushed first. Finally, in HP 5406zl only

he first few packets of each flow (for 80 ms on average, 103 ms

ax in this experiment) are forwarded to α and all the rest to β .

e believe that the switch ignores the priorities in hardware (as

inted in documentation of the older firmware version) and treats

ules installed later as more important. We confirm this hypothe-

is with additional experiments not reported here. Further, because

he priorities are trimmed in hardware, when installing two rules

ith exactly the same match but different priorities and actions

he switch returns an error. 

Summary : Results ( Table 5 ) suggest that switches may perma-

ently or temporarily forward according to incorrect, low priority

ules. 

. Flow table update speed 

The goal of the next set of experiments is to pinpoint the most

mportant aspects that affect rule update speed. We first pick vari-

us performance-related parameters: the number of in-flight com-

ands, current flow table occupancy, size of request batches, used

riorities, rule access patterns. Then we sample the whole space

f these parameters to identify the ones that cause some varia-

ion. From the previous section we know that although the control

lane information is imprecise, in a long run the error becomes

egligible, because all switches except for Switch X synchronize

he data and control plane views regularly. Therefore, we rely on

arriers to measure update rates in long running experiments used

n this section. Based on the results, we select a few experimental

onfigurations which highlight most of our findings and present

hem in Table 6 . 

.1. Two in-flight batches keep the switch busy 

Setting the number of commands a controller should send to

he switch before receiving any acknowledgments is an important

ecision when building a controller [12] . Underutilizing or over-

oading the switch with commands is undesired. Here, we explore

hether there is a tradeoff between rule update rate and the ser-

icing delay (time between sending a command and the switch ap-

lying it). 

We use the default setup with R = 300 and B = 2000 batches of

ule updates. The controller sends batch i + k only when it receives

 barrier reply for batch number i . We vary k and report the aver-

ge rule update rate, which we compute as 2 ∗B / T where T is the

ime between sending the first batch and receiving a barrier reply

or the last and 2 comes from the fact that each batch contains one

dd and one delete. 

Fig. 10 shows the average update rate. The rule update rate with

ne outstanding batch is low as the switch is idle for at least a

etwork RTT. However, even two in-flight batches are usually suffi-

ient to saturate tested switches given our network latencies. Thus,

e use 2 in-flight batches in all following experiments. Since the

pdate rate for NoviSwitch 1132 is often an order of magnitude

igher than other switches, we use plots with a split y axis. 

Looking deeper into the results, we notice that with a chang-

ng number of in-flight batches HP 5406zl responds in an unex-

ected way. In Fig. 11 we plot the barrier reply arrival times nor-

alized to the time when the first batch was sent for R = 300 ,

 = 50 and a number of in-flight batches varying between 1 and

0. We show the results for only 4 values to improve readability. If
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Table 6 

Dimensions of experimental parameters we report in this section. Note, that we also run experiments for other combinations 

of parameters to verify the conclusions. 

Experiment In-flight batches Batch size (del + add) Initial rules R 

In-flight batches 1–20 1 + 1 300 

Flow table occupancy 2 1 + 1 50 to max for switch 

Priorities as in Flow table occupancy + a single low priority rule in the flow table 

Access patterns 2 1 + 1 50 to max for switch + priorities 

Working set as in Flow table occupancy, vary the number of rules that are not updated during the experiment 

Batch size 2 1 + 1 to 20+20 300 

Fig. 10. Switch performance increases with the number of in-flight requests. How- 

ever, the improvements beyond the case where the controller waits for confirma- 

tion of the previous request before sending the next one ( k = 1 ) are negligible. 

Fig. 11. HP 5406zl barrier reply arrival times. HP 5406zl postpones sending barrier 

replies until there are no more pending requests or there are 29 pending responses. 
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here are requests in the queue, the switch batches the responses

nd sends them together in bigger groups. If the constant stream

f requests is shorter than 30, the switch waits to process all, oth-

rwise, the first response comes after 29 requests. Moreover, the

otal processing time when the switch receives all updates at once

s significantly shorter than for updates arriving in a closed loop.

his can be due to the increased efficiency of batch processing and

ewer context switches between message receiving and processing

ogic on the switch. The effect is visible, but much less pronounced

or medium numbers of in-flight batches. This observation makes

t difficult to build a controller that keeps the switch command

ueue short but full. The controller has to either let the queue get

mpty, or maintain the length longer than 30 batches. But based

n the previous observation, even letting the queue to get empty

as minimal impact on the throughput. 
Summary : We demonstrate that with LAN latencies two or three

n-flight batches suffice to achieve full switch performance. Since,

any in-flight requests increase the service time, controllers should

end only a handful of requests at a time. 

.2. Current flow table occupancy matters 

The number of rules stored in a flow table is a very important

arameter for a switch. Bigger tables allow for a fine grained traf-

c control. However, there is a well known tradeoff—TCAM space

s expensive, so tables that allow complex matches usually have

imited size. 

We discover another, hidden cost of full flow tables. Namely, we

nalyze how the rule update rate is affected by the current number

f rules installed in the flow table. We use the default setup fixing

 = 20 0 0 and changing the value of R . 

In Fig. 12 we report the average rule update rate when vary-

ng switch flow table occupancy. There are three distinct patterns

isible. Pica8 P-3290, Dell 8132F and Switch Y express similar be-

avior. The rule update rate is high when the flow table contains

 small number of entries but quickly deteriorates as the number

f entries increases. As we confirmed with one of the vendors and

educed based on statistics of another switch, there are two rea-

ons why the performance drops when the number of rules in the

able increases. First, even if a switch ultimately installs all rules

n hardware, it keeps a software flow table as well. The flows are

rst updated in the software data structure which takes more time

hen the structure is bigger. Second, the rules need to be pushed

nto hardware (the switch ASIC), which may require rearranging

he existing entries. Unlike other ASIC-based switches, HP 5406zl

aintains a lower, but stable rate following a step function with a

reaking point around 760 rules in the flow table. This stability is

aused by periods of inactivity explained in Section 4 . An update

ate for NoviSwitch 1132 is an order of magnitude higher than for

ther switches. Additionally, the fast update rate (about 70 0 0 up-

ates/s) and its stability that is independent of the flow table oc-

upancy for this device contrasts with all other switches. 

Since Switch X update rate changes during an experiment and

n older firmware version it does not offer a reliable way to mea-

ure its performance based on the control plane only, we manually

omputed update rates from the data plane experiments. As previ-

usly explained, there are three phases in this switch operation:

low rate when the switch is busy with control plane, fast rate

hen the switch does not deal with the control plane, and a very

low phase after the switch has installed about 4600 rules. Table 7

ontains update rates in these three phases depending on the flow

able occupancy (phase II is missing when the transition to phase

II happens before all control plane messages are processed, phase

II is missing for 7% occupancy, because the experiment is too short

o reveal it). The results show that the switch performs similarly

o other tested devices ( Fig. 12 ) until it installs 4600 rules dur-

ng the experiment. After that point the performance drops signifi-

antly (phase III). It is also visible that the switch can modify rules
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Table 7 

Flow table update rate in Switch X depending on switch state and flow table oc- 

cupancy. The rate gradually decreases with increasing number of rules in the flow 

table. After installing a total number of about 4600 rules, the switch update rate 

drastically decreases. 

Occupancy phase I phase II phase III 

7% (300 rules) 415 rules/s 860 rules/s –

25% (1125 rules) 374 rules/s 790 rules/s 34 rules/s 

50% (2250 rules) 340 rules/s – 28 rules/s 

75% (3375 rules) 320 rules/s – 20 rules/s 

95% (4275 rules) 302 rules/s – 8 rules/s 

Fig. 12. For most switches the performance decreases when the number of rules in 

the flow table is higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Priorities cripple performance — Experiment from Fig. 12 repeated with a 

single additional low-priority rule installed reveals a massive fall in performance 

for two of the tested switches. 

Table 8 

Flow table update rate in NoviSwitch 1132 depending on priority patterns and flow 

table occupancy. The rate depends on the number of priorities in use and number 

of newly added priorities. 

Priorities 10 0 0 rules 20 0 0 rules 

D − � i 
10 

� 216 rules/s 110 rules/s 

D − � i 
20 

� 374 rules/s 215 rules/s 

D − (i %10) 5222 rules/s 5588 rules/s 

D − (i %20) 6468 rules/s 6142 rules/s 
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9 This is consistent with the observation made in [33] , but the difference is 

smaller as for each addition we also delete the lowest priority rule. 
two times quicker when it does not need to process control plane

messages (phase II). 

Summary : The performance of most tested switches drops with a

number of installed rules, but the absolute values and the slope of this

drop vary. Therefore, controller developers should not only take into

account the total flow table size, but also what is the performance

cost of filling the table with additional rules. 

5.3. Priorities decrease the update rate 

OpenFlow allows to assign a priority to each rule, but all our

previous experiments considered only rules with equal, default pri-

orities. A packet is always processed according to the highest prior-

ity rule that matches its header. Furthermore, in OpenFlow 1.0, the

default behavior for a packet not matching any rule is to encapsu-

late it in a PacketIn message and send to the controller. To avoid

overloading the controller, it is often desirable to install a lowest

priority all-matching rule that drops packets. We conduct an ex-

periment that mimics such a situation. The experiment setup is ex-

actly the same as the one described in Section 5.2 with one addi-

tional lowest priority drop-all rule installed before all flow-specific

rules. 

Fig. 13 shows that for a low flow table occupancy, all switches

perform the same as without the low priority rule. However, Pica8

P-3290 and Dell 8132F suffer from a significant drop in perfor-

mance at about 130 and 255 installed rules respectively. After this

massive drop, the performance gradually decreases until it reaches

12 updates/s for 20 0 0 rules in the flow table for Pica8 P-3290

and 30 updates/s for 750 rules in the flow table for Dell 8132F

where both switches have their tables almost full. Interestingly, HP

5406zl’s update rate does not decrease, possibly because it ignores

the priorities. Switch Y and NoviSwitch 1132 update their flow ta-

bles at the same rate with and without the low priority rule. Again,

for plot readability we do not show the rate for NoviSwitch 1132,

which is an order of magnitude higher than other switches. We
onfirm that the results are not affected by the fully wildcarded

atch or the drop action in the low priority rule by replacing it

ith a specific IP src/dst match and a forwarding action. 

Finally, we rerun the experiments from Section 5.1 with a low

riority rule. The rates for Pica8 P-3290 and Dell 8132F are lower,

ut the characteristics and the conclusions hold. 

More priorities: Next, we check the effect of using different

riorities for each rule. We modify the default set-up such that

ach rule has a different priority assigned and install them in an

ncreasing (rule i has a priority D + i, where D is the default prior-

ty value) or decreasing (rule i has a priority D − i ) order. 

Switches react differently. As it is visible in Fig. 14 , both Pica8

-3290’s and Dell 8132F’s performance follows a similar curve as

n the previous experiment. There is no breaking point though.

n both cases the performance is higher with only a single differ-

nt priority rule until the breaking point, after which they become

qual. Further, Pica8 P-3290 updates rules quicker in the increasing

riority scenario. 9 

Fig. 14 shows that also NoviSwitch 1132 becomes significantly

lower when there are additional priorities used as the update rate

epends on the number of rules in the flow table. Even with just

0 installed rules, the rate drops from original 70 0 0 updates/s to

bout 420. When the table occupancy increases the rate is as low

s 5 updates/s. Update patterns does not matter – in the decreas-

ng priority scenario the rate is minimally higher (up to 3%). In

oth cases, the update rate is inversely proportional to the occu-

ancy. A deeper analysis shows, that the rate depends more on the

umber of priorities used than a total number of rules ( Table 8 ).

or example, the rate with 10 0 0 rules in the table when rule i has

 priority D − � i 
10 � is almost equal to the rate with 100 initial rules

n Fig. 14 . Further, it also seems that adding a rule with a new pri-

rity to the table takes a lot of time. When we run the experiment

ith rules using the same priorities as rules installed in the table



M. Ku ́zniar et al. / Computer Networks 136 (2018) 22–36 33 

Fig. 14. Switch rule update performance for different rule priority patterns. 

Fig. 15. Size of the rule working set size affects the performance. For both Pica8 P-3290 and Dell 8132F when the low priority rule is installed, the performance depends 

mostly on the count of the rules being constantly changed and not on the total number of rules installed (10 0 0 for Pica8 P-3290 and 500 for Dell 8132F in the plots). The 

same can be said about NoviSwitch 1132 with various rule priorities (20 0 0 installed rules in the plot). 

b  

d  

m  

o  

n

 

p  

v  

s  

p

 

s  

i  

s  

i  

I  

b  

W

 

r  

a  

b  

m  

R  

p  

p  

s  

s  

p  

p  

r

 

w  

w  

a  

i

 

r  

n  

a

5

 

c  

(  

t  

T  

a  

u  

p  

w

 

s  

i  

d  

i

 

r  

m  

f  

s  

T

 

b  

m  

r  

8  

f  

a  

t  

S  

t  

r

 

T  
efore the experiment started, the rate is much higher. The ven-

or confirms that handling many priorities requires the switch to

ove some rules in TCAM, which makes updates slower. They use

ptimizations to reduce the impact of move operations when the

umber of priorities is small. 

HP 5406zl control plane measurement is not affected by the

riorities, but as our data plane study shows there is a serious di-

ergence between the control plane reports and the reality for this

witch in this experiment (see Section 6 ). Finally, using different

riorities does not affect Switch Y performance. 

Working set size: Finally, we check what happens if only a

mall subset of rules in the table (henceforth referred to as “work-

ng set”) is frequently updated. We modify the default experiment

etup such that batch i deletes the rule matching flow number

 − W and installs a rule matching flow i . We vary the value of W .

n other words, assuming there are R rules initially in the flow ta-

le, the first R − W rules never change and we update only the last

 rules. 

The results show that HP 5406zl performance is unaffected and

emains the same as presented in Figs. 12 and 13 both below and

bove the threshold of 760 rules in the flow table. Further, for

oth Pica8 P-3290 and Dell 8132F a small working set for updates

akes no difference if there is no low priority rule. For a given

 (10 0 0 for Pica8 P-3290 and 500 for Dell 8132F in Fig. 15 ), the

erformance is constant regardless of W . However, when the low

riority rule is installed, the update rate characteristic changes as

hown in Fig. 15 . For both switches, as long as the update working

et is smaller than their breaking point revealed in Section 5.2 , the

erformance stays as if there was no drop rule. After the breaking

oint, it degrades and is only marginally worse compared to the

esults in Section 5.2 for table occupancy W . 

A working set size affects NoviSwitch 1132 as well. In this case,

e analyze its performance when using multiple priorities ( Fig. 15 )

ith R = 20 0 0 . The rate depends on the working set size and is

lmost the same as the rate with the same total number of rules

n the flow table. 

Summary : The switch performance is difficult to predict—a single

ule can degrade the update rate of a switch by an order of mag-
itude. Controller developers should be aware of such behavior and

void potential sources of inefficiencies. 

.4. Barrier synchronization penalty varies 

A barrier request-reply pair of messages is very useful, as ac-

ording to the specification, it is the only way for the controller to

 i ) force an order of operations on the switch, and ( ii ) make sure

hat the switch control plane processed all previous commands.

he latter becomes important if the controller needs to know

bout any errors before continuing on with the switch reconfig-

ration. Because barriers might be needed frequently, in this ex-

eriment we measure the overhead given a frequency with which

e use barriers. 

We repeat our general experiment setup with R = 300 prein-

talled rules, this time varying the number of rule deletions and

nsertions in a single batch. To keep flow table size from diverging

uring the experiment, we use an equal number of deletions and

nsertions. 

As visible in Fig. 16 , for both Pica8 P-3290 and HP 5406zl the

ate slowly increases with growing batch size, but the difference is

arginal: up to 14% for Pica8 P-3290 and up to 8% for HP 5406zl

or a batch size growing 20 times. On the other hand, Dell 8132F

peeds up 3 times in the same range if no priorities are involved.

he same observation can be made for Switch Y. 

While further investigating these results, we verified that the

arrier overhead for each particular switch recalculated in terms of

illiseconds is constant across a wide range of parameters – a bar-

ier takes roughly 0.1-0.3 ms for Pica8 P-3290, 3.1–3.4 ms for Dell

132F, 1 ms for Switch Y, 0.6-0.7 ms for HP 5406zl and 0.04 ms

or NoviSwitch 1132. This explains the high overhead of Switch Y

nd Dell 8132F for fast rule installations in Fig. 16 – barriers just

ake time comparable to rule installations. Taking into account that

witch Y and Dell 8132F are the only tested ASIC-based switches

hat provide correct barriers, our conclusion is that a working bar-

ier implementation is costly. 

Summary : Overall, we see that barrier cost varies across devices.

he controller, therefore, should be aware of the potential impact and
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Fig. 16. Cost of frequent barriers is modest except for the case of Dell 8132F with 

no priorities ( i.e. , with high baseline speed) and Switch Y where the cost is signifi- 

cant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. An update rate in Dell 8132F suddenly increases for 4 specific flow table 

occupancy values. 
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balance between the switch performance and potential notification

staleness. Moreover, there is a tradeoff between correct barrier imple-

mentation and performance. 

6. Open questions and future work 

In the process of running the experiments and gaining an un-

derstanding of the root causes of various unexpected behaviors, we

made additional observations. We briefly report them in this sec-

tion as this information may be useful or inspiring to investigate

certain open issues further. 

Rule insertion may act as a modification. In our experiments,

we observed that two out of six switches are unable to perform

an atomic rule modification. However, when receiving a rule in-

sertion command for a rule that has the same match and priority

as an already installed one, but a different set of actions, all the

tested switches modify the existing rule. Moreover, this operation

does not lead to any packet drops on HP 5406zl, which is better

than the behavior obtained by using a rule modification command

( Section 4.4 ). The behavior of Dell 8132F remains unchanged. We

note that the OpenFlow specifications describe the behavior when

a rule insertion command references an existing rule with identi-

cal match fields and priority. However, the behavior is to clear the

existing rule and insert the new one. The fact that for HP 5406zl

this operation works better than a modify command is surprising. 

Data plane traffic can increase the update rate of Pica8 P-

3290. We noticed that in some cases, sending data plane traffic

that matches currently installed rules at Pica8 P-3290 can speed

up the general update rate and even future updates. Our experi-

ments show that barrier inter-arrival times (time between barrier

replies for two consecutive barriers) shorten after the switch starts

processing packets belonging to already installed flows. We con-

firmed that the behavior is consistent across varying flow ranges

and long data series, however, we are unable to provide an expla-

nation of this phenomenon at this time nor confirm it with full

certainty. We find this completely counter-intuitive and leave it as

an open question for future work. 

Dell 8132F performs well with a full flow table. In Section 5.3 ,

we reported that the performance of Dell 8132F with a low prior-

ity rule installed decreases with the growing table occupancy and

drops down to about 30 updates per second when the flow ta-

ble contains 751 rules. We showed the update rate measured for

all possible flow table occupancies in an experiment with 20 0 0

update batches in Fig. 17 . We observed that this trend continues
ntil the table is full or there is one slot left. Surprisingly, the

witch performs updates that remove a rule and install a new one

ith a full table at a rate comparable to that observed without the

ow priority rule. There is also an unexpected sudden performance

mprovement at 510 and 511 rules. Measurements in both these

oints have a very high standard deviation, but the results for a

ull table are stable. Dell 8132F is a conventional switch adapted

o support OpenFlow. According to its documentation, the switch

ontains two separate tables with space for 256 and 512 rules re-

pectively. These numbers align well with performance changes we

bserve. 

. Conclusions 

In this paper we try to shed light on the state of OpenFlow

witches – an essential component of relatively new, but quickly

eveloping Software Defined Networks. While we do our best to

ake the study as broad and as thorough as possible, we observe

hat the switch performance is so unpredictable and depends on

o many parameters that we expect to reveal just the tip of the

ceberg. However, even the observations made here should be an

nspiration to revisit many assumptions about OpenFlow and SDN

n general. The main takeaway is that despite a common interface,

he switches are more diverse than one would expect, and this di-

ersity has to be taken into account when building controllers. 

Because of the limited resources, we managed to obtain suffi-

iently long access only to six switches over the years. In the fu-

ure, we plan to keep extending this study with additional devices,

s well as switches that are using alternative technologies (NetF-

GA, network processors, etc.), to obtain the full picture. Measur-

ng the precise data plane forwarding performance is another un-

xplored direction. 
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